P. A. Ottersbach et al. / Tetrahedron Letters 51 (2010) 2727–2729
2729
4. Matsuoka, M.; Segawa, J.; Makita, Y.; Ohmachi, S.; Kashima, T.; Nakamura,
K. I.; Hattori, M.; Kitano, M.; Kise, M. J. Heterocycl. Chem. 1997, 34, 1773–
1779.
5. Lin, L.-R.; Fang, W.; Huang, R.-B.; Zheng, L.-S. Chin. J. Struct. Chem. 2008, 27,
1059–1064.
6. (a) Copolla, G. M. Synthesis 1980, 505–535; (b) Kappe, T.; Stadlbauer, W. Adv.
Heterocycl. Chem. 1981, 28, 127–182; (c) Brouillette, Y.; Martinez, J.; Lisowski,
V. Eur. J. Org. Chem. 2009, 3487–3503.
NH acidity of the educt is a precondition for the conversion and as-
sume that carbon dioxide elimination is its driving force.
Alternative reaction conditions for the conversion of 1 to 2, that
is, microwave irradiation or elevated temperature, did not improve
the yield (see Supplementary data, S1, S2). However, as indicated
by TLC, more by-products were produced in these cases. Addition-
ally, 5-methyl- and 5-chloroisatoic anhydride were reacted with
carbon disulfide applying the abovementioned reaction conditions
(1,4-dioxane, rt). Indeed, the expected 1,2-dihydro-2-thioxo-4H-
3,1-benzothiazin-4-ones were formed and recovered in traces
(see Supplementary data, S4, S5).
In summary, we have introduced a new and unexpected syn-
thetic entry to 1,2-dihydro-2-thioxo-4H-3,1-benzothiazin-4-one
(2) from isatoic anhydride (1) and carbon disulfide. It was demon-
strated that carbon disulfide is entirely incorporated into the het-
erocyclic product and does not act as a thionation reagent. The
scope and limitations of this reaction are still under investigation
in our laboratories.
7. Rudorf, W.-D. J. Sulfur Chem. 2007, 28, 295–339.
8. Preparation of 1,2-dihydro-2-thioxo-4H-3,1-benzothiazin-4-one (2): To
a
suspension of isatoic anhydride (1; 1.63 g, 10 mmol) and Et3N (2.02 g,
20 mmol) in 1,4-dioxane (70 mL), CS2 (11.42 g, 150 mmol) was added. The
mixture was stirred for 120 h at room temperature. The meanwhile formed
orange-brown solution was evaporated to dryness and the residue was taken
up in EtOAc (400 mL) and washed with HCl (0.2 M, 3 Â 150 mL), H2O
(1 Â 150 mL), and brine (1 Â 150 mL). The organic layer was dried over
Na2SO4, and the solvent was removed under reduced pressure to obtain a
brownish crude product that was subjected to column chromatography
(petroleum ether/EtOAc/AcOH 80:20:1) to obtain a yellow solid, yield 0.88 g
(45%), mp 217–218 °C (lit.5 270–271 °C); 1H NMR (500 MHz, DMSO-d6): d 7.39
(ddd, J = 1.3, 7.3, 7.6 Hz, 1H, H-6), 7.56 (dd, J = 1.0, 8.2 Hz, 1H, H-8), 7.82 (ddd,
J = 1.6, 7.3, 8.2 Hz, 1H, H-7), 7.90 (dd, J = 1.6, 7.9 Hz, 1H, H-5), 13.71 (br s, 1H,
NH); 13C NMR (125 MHz, DMSO-d6): d 118.97 (C-4a), 119.74 (C-8), 125.52,
125.79 (C-5, C-6), 137.07 (C-7), 142.21 (C-8a), 183.86 (C-4), 188.20 (C-2); MS
ESI+ (m/z, ion, rel. intensity %): 196.0 ([C8H6NOS2]+, 43), 162.0 ([C8H4NOS]+,
100); Anal. Calcd for C8H5NOS2: C, 49.21; H, 2.58; N, 7.17. Found: C, 49.61; H,
2.91; N, 7.25.
Acknowledgments
9. Preparation of 2-methylthio-4H-3,1-benzothiazin-4-one (3): 1,2-Dihydro-2-
thioxo-4H-3,1-benzothiazin-4-one (2; 0.74 g, 3.8 mmol) and Et3N (0.38 g,
3.8 mmol) were dissolved in dry 1,4-dioxane (20 mL). The orange solution
was cooled to 10 °C with a water bath, followed by the dropwise addition of
methyl iodide (0.54 g, 3.8 mmol) in dry 1,4-dioxane (10 mL). The reaction
mixture was allowed to warm to room temperature and after 30 min a white
precipitate was formed. After additional 23.5 h, the solvent was evaporated and
the residue was taken up in EtOAc (100 mL) and washed with HCl (0.2 M,
3 Â 100 mL), H2O (1 Â 100 mL), and brine (1 Â 100 mL). The organic layer was
dried over Na2SO4 and the solvent was removed under reduced pressure to
yield a brown oil. Purification by column chromatography (petroleum ether/
EtOAc/AcOH 80:20:1) provided a yellow solid, yield 0.66 g (83%), mp 53–55 °C
(lit.3 54–56 °C); 1H NMR (500 MHz, DMSO-d6): d 2.72 (s, 3H, SCH3), 7.57 (ddd,
J = 1.3, 7.3, 7.9 Hz, 1H, H-6), 7.71 (dd, J = 1.3, 8.2 Hz, 1H, H-8), 7.91 (ddd, J = 1.6,
7.3, 8.1 Hz, 1H, H-7), 8.05 (dd, J = 1.6, 8.2 Hz, 1H, H-5); 13C NMR (125 MHz,
DMSO-d6): d 13.91 (SCH3), 118.62 (C-4a), 124.66 (C-5), 128.31 (C-6), 129.84 (C-
8), 136.81 (C-7), 147.47 (C-8a), 163.44 (C-2), 182.30 (C-4); MS ESI+ (m/z, ion,
rel. intensity %): 264.0 ([C9H7NOS2 + Na+CH3OH], 15), 232.0 ([C9H7NOS2 + Na+],
15), 210.0 ([C9H8NOS2]+, 7), 162.0 ([C8H4NOS]+, 100); Anal. Calcd for C9H7NOS2:
C, 51.65; H, 3.37; N, 6.69. Found: C, 51.78; H, 3.57; N, 6.71.
This work was supported by the German Research Society
(Graduate College 804). G.S. thanks Professor A.C. Filippou for
support.
Supplementary data
Supplementary data (crystallographic data, HMQC and HMBC
spectra of 2, 1H NMR and 13C NMR data of 2, 3 and of the 13C-la-
beled analog 6, alternative synthetic procedures for 2, preparation
of 5-methylisatoic anhydride, as well as reaction of 5-methyl- and
5-chloroisatoic anhydride with carbon disulfide, and experiments
regarding the iminoketene mechanism) associated with this article
10. (a) Zong, Z.-M.; Peng, Y.-L.; Liu, Z.-G.; Zhou, S.-L.; Wu, L.; Wang, X.-H.; Wei, X.-
Y.; Lee, C. W. Korean J. Chem. Eng. 2003, 20, 235–238; (b) Fu, X.; Zhang, C.;
Zhang, D.; Yuan, S. Chem. Phys. Lett. 2006, 420, 162–165; (c) Polshettiwar, V.;
Kaushik, M. P. J. Sulfur Chem. 2006, 27, 353–386.
11. (a) Ziegler, E.; Kappe, T.; Steiger, W. Z. Naturforsch. 1965, 20b, 812–813; (b)
Smalley, R. K.; Suschitzky, H.; Tanner, E. M. Tetrahedron Lett. 1966, 7, 3465–
3469.
References and notes
1. (a) Pietsch, M.; Gütschow, M. J. Biol. Chem. 2002, 277, 24006–24013; (b) Krantz,
A.; Spencer, R. W.; Tam, T. F.; Liak, T. J.; Copp, L. J.; Thomas, E. M.; Rafferty, S. P. J.
Med. Chem. 1990, 33, 464–479; (c) Uejima, Y.; Oshida, J.; Kawabata, H.; Kokubo,
M.; Kato, Y.; Fujii, K. Biochem. Pharmacol. 1994, 48, 426–428; (d) Gütschow, M.;
Kuerschner, L.; Pietsch, M.; Ambrozak, A.; Neumann, U.; Günther, R.; Hofmann,
H. J. Arch. Biochem. Biophys. 2002, 402, 180–191.
2. (a) Matysiak, J. Bioorg. Med. Chem. 2006, 14, 2613–2619; (b) Besson, T.; Rees, C.
W.; Cottenceau, G.; Pons, A.-M. Bioorg. Med. Chem. Lett. 1996, 6, 2343–2348; (c)
Alexandre, F.-R.; Berecibar, A.; Wrigglesworth, R.; Perreux, L.; Guillon, J.; Léger,
J.-M.; Thiéry, V.; Besson, T. Tetrahedron 2005, 61, 8288–8294; (d) Neumann, U.;
Gütschow, M. Bioorg. Chem. 1995, 23, 72–88.
12. Zhou, C.; Birney, D. M. J. Org. Chem. 2004, 69, 86–94.
13. Reddy, C. K.; Reddy, P. S. N.; Ratnam, C. V. Indian J. Chem. 1987, 26B, 882–883.
14. Kametani, T.; Loc, C. V.; Higa, T.; Koizumi, M.; Ihara, M.; Fukumoto, K. J. Am.
Chem. Soc. 1977, 99, 2306–2309.
15. (a) Kihara, N.; Nakawaki, Y.; Endo, T. J. Org. Chem. 1995, 60, 473–475; (b)
Maggi, R.; Malmassari, C.; Oro, C.; Pela, R.; Sartori, G.; Soldi, L. Synthesis
2008, 53–56; (c) Halimehjani, A. Z.; Ebrahimi, F.; Azizi, N.; Saidi, M. R. J.
Heterocycl. Chem. 2009, 46, 347–350; (d) North, M.; Villuendas, P. Synlett
2010, 623–627.
3. Häcker, H.-G.; Grundmann, F.; Lohr, F.; Ottersbach, P. A.; Zhou, J.;
Schnakenburg, G.; Gütschow, M. Molecules 2009, 14, 378–402.