Full Paper
1
1
m: White solid. H NMR (400 MHz, CDCl , 23 °C, TMS): δ = 7.82 (d,
[28] M. Quiroz-Guzman, D. P. Fagnant, X.-Y. Chen, C. Shi, J. F. Brennecke, G. S.
Goff, W. Runde, RSC Adv. 2014, 4, 14840–14846.
[29] S. Hayouni, A. Robert, N. Ferlin, H. Amri, S. Bouquillon, RSC Adv. 2016, 6,
3
3
3
JHH = 7.7 Hz, 1H), 7.70 (d, JHH = 7.6 Hz, 1H), 7.62–7.61 (m, 4H),
.48–7.43 (m, 2H), 7.35–7.28 (m, 2H), 6.81 (d, J = 3.2 Hz, 1H);
NMR (101 MHz, CDCl , 23 °C, TMS): δ = 139.70 (s), 135.81 (s), 129.59
s), 127.93 (s), 126.43 (s), 124.38 (s), 122.33 (s), 121.10 (s), 120.33 (s),
3
13
7
C
HH
1
13583–113595.
30] T. Ando, Y. Kohno, N. Nakamura, H. Ohno, Chem. Commun. 2013, 49,
0248–10250.
3
[
[
(
1
1
10.48 (s), 103.55 (s). This compound has been previously re-
31] N. Ferlin, M. Courty, S. Gatard, M. Spulak, B. Quilty, I. Beadham, M. Ghavre,
[62]
ported.
A. Haiß, K. Kümmerer, N. Gathergood, Tetrahedron 2013, 69, 6150–6161.
1
[32] F. G. Bordwell, G. E. Drucker, H. E. Fried, J. Org. Chem. 1981, 46, 632–635.
1
n: White solid. H NMR (400 MHz, CDCl , 23 °C, TMS): δ = 8.33–
3
[
33] P. F. Larsson, A. Correa, M. Carril, P. O. Norrby, C. Bolm, Angew. Chem. Int.
Ed. 2009, 48, 5691–5693; Angew. Chem. 2009, 121, 5801.
8
.28 (m, 2H), 7.73–7.68 (m, 4H), 7.61–7.54 (m, 5H), 7.48–7.40 (m, 2H);
C NMR (101 MHz, CDCl , 23 °C, TMS): δ = 141.09 (s), 137.90 (s),
29.97 (s), 127.54 (s), 127.27 (s), 126.07 (s), 123.56 (s), 120.44 (s),
20.07 (s), 109.91 (s). This compound has been previously re-
13
3
[
[
34] P. F. Larsson, C. Bolm, P. O. Norrby, Chem. Eur. J. 2010, 16, 13613–13616.
35] P. F. Larsson, P. Astvik, P. O. Norrby, Beilstein J. Org. Chem. 2012, 8, 1909–
1
1
1
915.
[36] P. F. Larsson, C. J. Wallentin, P. O. Norrby, ChemCatChem 2014, 6, 1277–
282.
[63]
ported.
1
[
[
37] R. Xie, H. Fu, Y. Ling, Chem. Commun. 2011, 47, 8976.
38] K. Yang, Y. Qiu, Z. Li, Z. Wang, S. Jiang, J. Org. Chem. 2011, 76, 3151–
Acknowledgments
3
159.
This work was supported by Syngenta and the UK EPSRC (Grant
EP/M507878/1).
[
[
[
39] J. Gao, S. Bhunia, K. Wang, L. Gan, S. Xia, D. Ma, Org. Lett. 2017, 19, 2809–
2812.
40] J. B. Edson, C. S. Macomber, B. S. Pivovar, J. M. Boncella, J. Membr. Sci.
2012, 399–400, 49–59.
Keywords: Copper · Ullmann reaction · Amination · C–N
bond coupling · Organic bases
41] M. C. Tseng, H. C. Kan, Y. H. Chu, Tetrahedron Lett. 2007, 48, 9085–9089.
[42] T. Ramnial, D. D. Ino, J. A. C. Clyburne, Chem. Commun. 2005, 325–327.
[
43] T. Ramnial, S. A. Taylor, M. L. Bender, B. Gorodetsky, P. T. K. Lee, D. A.
Dickie, B. M. McCollum, C. C. Pye, C. J. Walsby, J. A. C. Clyburne, J. Org.
Chem. 2008, 73, 801–812.
[
1] J. F. Hartwig, Acc. Chem. Res. 1998, 31, 852–860.
[
2] J. P. Wolfe, S. Wagaw, J.-F. Marcoux, S. L. Buchwald, Acc. Chem. Res. 1998,
[44] D. S. Firaha, A. V. Gibalova, O. Hollóczki, ACS Omega 2017, 2, 2901–2911.
[45] D. Ma, Q. Cai, H. Zhang, Org. Lett. 2003, 5, 2453–2455.
[46] Y. B. Huang, C. T. Yang, J. Yi, X. J. Deng, Y. Fu, L. Liu, J. Org. Chem. 2011,
76, 800–810.
[47] R. E. Tundel, K. W. Anderson, S. L. Buchwald, J. Org. Chem. 2006, 71, 430–
433.
[48] E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. Dirocco, I. W. Davies,
S. L. Buchwald, D. W. C. Macmillan, Science 2016, 353, 279–283.
[49] C. Li, Y. Kawamata, H. Nakamura, J. C. Vantourout, Z. Liu, Q. Hou, D. Bao,
J. T. Starr, J. Chen, M. Yan, Angew. Chem. Int. Ed. 2017, 56, 13088–13093;
Angew. Chem. 2017, 129, 13268.
3
1, 805–818.
[
[
[
[
[
3] B. H. Yang, S. L. Buchwald, J. Organomet. Chem. 1999, 576, 125–146.
4] J. F. Hartwig, Pure Appl. Chem. 1999, 71, 1417–1423.
5] P. Ruiz-Castillo, S. L. Buchwald, Chem. Rev. 2016, 116, 12564–12649.
6] I. P. Beletskaya, A. V. Cheprakov, Coord. Chem. Rev. 2004, 248, 2337–2364.
7] F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2008, 47, 3096–3099;
Angew. Chem. 2008, 120, 3140.
[
[
8] F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954–6971;
Angew. Chem. 2009, 121, 7088.
9] G. Evano, N. Blanchard, M. Toumi, Chem. Rev. 2008, 108, 3054–3131.
[
[
10] H. Lin, D. Sun, Org. Prep. Proced. Int. 2013, 45, 341–394..
11] S. Bhunia, G. G. Pawar, S. V. Kumar, Y. Jiang, D. Ma, Angew. Chem. Int. Ed.
[50] J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald, J. Am. Chem. Soc. 2018,
140, 4721–4725.
2
017, 56, 16136; Angew. Chem. 2017, 129, 16352
[51] H.-J. Cristau, P. P. Cellier, J.-F. Spindler, M. Taillefer, Chem. Eur. J. 2004, 10,
5607–5622.
[
[
[
[
[
12] F. Y. Kwong, S. L. Buchwald, Org. Lett. 2003, 5, 793–796.
13] D. Ma, Q. Cai, Org. Lett. 2003, 5, 3799–3802.
[52] R. C. Chadwick, V. Kardelis, P. Lim, A. Adronov, J. Org. Chem. 2014, 79,
7728–7733.
[53] W. Zhou, M. Fan, J. Yin, Y. Jiang, D. Ma, J. Am. Chem. Soc. 2015, 137,
11942–11945.
[54] L. Hie, S. D. Ramgren, T. Mesganaw, N. K. Garg, Org. Lett. 2012, 14, 4182–
4185.
14] N. Otto, T. Opatz, Beilstein J. Org. Chem. 2012, 8, 1105–1111.
15] X. Lv, Z. Wang, W. Bao, Tetrahedron 2006, 62, 4756–4761.
16] Q. Cai, H. Zhang, B. Zou, X. Xie, W. Zhu, G. He, J. Wang, X. Pan, Y. Chen,
Q. Yuan, Pure Appl. Chem. 2009, 81, 227–234.
[
17] C.-T. Yang, Y. Fu, Y.-B. Huang, J. Yi, Q.-X. Guo, L. Liu, Angew. Chem. Int. Ed.
2
009, 48, 7398–7401; Angew. Chem. 2009, 121, 7534.
[55] L. Rout, S. Jammi, T. Punniyamurthy, Org. Lett. 2007, 9, 3397–3399.
[56] F. Y. Kwong, A. Klapars, S. L. Buchwald, Org. Lett. 2002, 4, 581–584.
[57] T. D. Quach, R. A. Batey, Org. Lett. 2003, 5, 4397–4400.
[58] R. Arundhathi, D. C. Kumar, B. Sreedhar, Eur. J. Org. Chem. 2010, 2010,
3621–3630.
[59] S. D. Sawant, M. Srinivas, K. A. Aravinda Kumar, G. Lakshma Reddy, P. P.
Singh, B. Singh, A. K. Sharma, P. R. Sharma, R. A. Vishwakarma, Tetrahe-
dron Lett. 2013, 54, 5351–5354.
[
[
18] H. B. Goodbrand, N. X. Hu, J. Org. Chem. 1999, 64, 670–674.
19] S. Sung, D. C. Braddock, A. Armstrong, C. Brennan, D. Sale, A. J. P. White,
R. P. Davies, Chem. Eur. J. 2015, 21, 7179–7192.
20] G. J. Sherborne, S. Adomeit, R. Menzel, J. Rabeah, A. Brückner, M. R.
Fielding, C. E. Willans, B. N. Nguyen, Chem. Sci. 2017, 8, 7203–7210.
21] Q. A. Lo, D. Sale, D. C. Braddock, R. P. Davies, ACS Catal. 2018, 8, 101–
[
[
[
109.
22] S. Sung, D. Sale, D. C. Braddock, A. Armstrong, C. Brennan, R. P. Davies,
ACS Catal. 2016, 6, 3965–3974.
[60] S. Huo, C. F. Harris, D. A. K. Vezzu, J. P. Gagnier, M. E. Smith, R. D. Pike, Y.
Li, Polyhedron 2013, 52, 1030–1040.
[23] A. Shafir, S. L. Buchwald, J. Am. Chem. Soc. 2006, 128, 8742–8743.
[24] C. Deldaele, G. Evano, ChemCatChem 2016, 8, 1319–1328.
[25] D. Wang, Y. Zheng, M. Yang, F. Zhang, F. Mao, J. Yu, X. Xia, Org. Biomol.
Chem. 2017, 15, 8009–8012.
[61] M. Nasrollahzadeh, A. Azarian, A. Ehsani, A. Zahraei, Tetrahedron Lett.
2014, 55, 2813–2817.
[62] W. Chen, Y. Zhang, L. Zhu, J. Lan, R. Xie, J. You, J. Am. Chem. Soc. 2007,
129, 13879–13886.
[
[
26] Y. Wang, J. Ling, Y. Zhang, A. Zhang, Q. Yao, Eur. J. Org. Chem. 2015, 2015,
[63] S. E. Creutz, K. J. Lotito, G. C. Fu, J. C. Peters, Science 2012, 338, 647–651.
4153–4161.
27] Y. Hayashi, N. Umekubo, T. Hirama, Org. Lett. 2017, 19, 4155–4158.
Received: January 23, 2019
Eur. J. Org. Chem. 0000, 0–0
www.eurjoc.org
8
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim