10.1002/anie.202009175
Angewandte Chemie International Edition
COMMUNICATION
Scheme 5. Mechanistic proposal: (a) dual catalytic cycles and (b) putative structure of the solvolyzed ArI(III) species.
[3]
[4]
[5]
M. Brown, U. Farid, T. Wirth, Synlett 2013, 24, 424–431.
The stability of the can also be further enhanced by The
substituents on the aryl group of A, can play a crucial role in the
stabilization of the hypervalent iodine(III) reagents generated.
From IBA, the formation of a cyclic benziodoxole would occur for
both the peroxy- λ3-iodane D[56] and HFIP-derived E (Scheme 5b).
For Kita’s bis iodoarene catalyst,[41] the stabilization would come
from the formation of µ-oxo species, here depicted for the fully
solvolyzed adduct E.
A. Yoshimura, V. V. Zhdankin, Chem. Rev. 2016, 116, 3328–3435.
M. Ochiai, Y. Takeuchi, T. Katayama, T. Sueda, K. Miyamoto, J. Am.
Chem. Soc. 2005, 127, 12244–12245.
T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma, Y. Kita,
Angew. Chem. Int. Ed. 2005, 44, 6193–6196; Angew. Chem. 2005, 117,
6349–6352.
T. Dohi, Y. Kita, Chem. Commun. 2009, 2073–2085.
F. V. Singh, T. Wirth, Chem. – Asian J. 2014, 9, 950–971.
X. Li, P. Chen, G. Liu, Beilstein J. Org. Chem. 2018, 14, 1813–1825.
F. Berthiol, Synthesis 2015, 47, 587–603.
[6]
[7]
[8]
[9]
[10]
[11]
A. Flores, E. Cots, J. Bergès, K. Muñiz, Adv. Synth. Catal. 2019, 361,
Using the spiro-cyclization of amides as a model reaction, we
have thus demonstrated that aerobic iodoarene catalysis can be
enabled by relying on a pyrylium photocatalyst under blue light
irradiation. This unprecedented dual organocatalytic system
allows the use of low catalytic loading of both catalyst under very
mild operating conditions. We are currently pursuing more
thorough study of this dual catalyst system to gain a deeper
understanding of the reaction pathway by experimental and
theoretical methods, with a particular focus on determining the
nature of the oxidized iodoarene species. This will allow to expand
the range of transformations that can be accomplished using this
strategy, including the development of asymmetric reactions.
2–25.
[12]
[13]
[14]
T. Fuchigami, T. Fujita, J. Org. Chem. 1994, 59, 7190–7192.
T. Broese, R. Francke, Org. Lett. 2016, 18, 5896–5899.
O. Koleda, T. Broese, J. Noetzel, M. Roemelt, E. Suna, R. Francke, J.
Org. Chem. 2017, 82, 11669–11681.
M. Elsherbini, T. Wirth, Chem. – Eur. J. 2018, 24, 13399–13407.
A. F. Roesel, T. Broese, M. Májek, R. Francke, ChemElectroChem
2019, 6, 4229–4237.
R. Francke, Curr. Opin. Electrochem. 2019, 15, 83–88.
M. Elsherbini, B. Winterson, H. Alharbi, A. A. Folgueiras‐Amador, C.
Génot, T. Wirth, Angew. Chem. Int. Ed. 2019, 58, 9811–9815; Angew.
Chem. 2019, 131, 9916–9920.
A. Maity, B. L. Frey, N. D. Hoskinson, D. C. Powers, J. Am. Chem. Soc.
2020, 142, 4990–4995.
[15]
[16]
[17]
[18]
[19]
[20]
[21]
[22]
H. G. Roth, N. A. Romero, D. A. Nicewicz, Synlett 2016, 27, 714–723.
P. M. Wood, Biochem. J. 1988, 253, 287–289.
J. Piera, J.-E. Bäckvall, Angew. Chem. Int. Ed. 2008, 47, 3506–3523;
Angew. Chem. 2008, 120, 3558–3576.
[23]
K. Miyamoto, J. Yamashita, S. Narita, Y. Sakai, K. Hirano, T. Saito, C.
Wang, M. Ochiai, M. Uchiyama, Chem. Commun. 2017, 53, 9781–9784.
A. Maity, S.-M. Hyun, D. C. Powers, Nat. Chem. 2018, 10, 200–204.
Wöhler, Liebig, Ann. Pharm. 1832, 3, 249–282.
H. L. J. Bäckström, J. Am. Chem. Soc. 1927, 49, 1460–1472.
S.-M. Hyun, M. Yuan, A. Maity, O. Gutierrez, D. C. Powers, Chem 2019,
5, 2388–2404.
Acknowledgements
[24]
[25]
[26]
[27]
K.C. thank Prof. S. Quideau (Université de Bordeaux), Dr L.
Grimaud (ENS, Paris), Dr I. Ciofini (Chimie ParisTech), Dr N.
Hoffmann (Université de Reims) and Pr G. Gasser (Chimie
ParisTech) for insightful dicussions. The authors also thank
CNRS, ICSN and Chimie ParisTech, for financial support.
[28]
A. Maity, S.-M. Hyun, A. K. Wortman, D. C. Powers, Angew. Chem. Int.
Ed. 2018, 57, 7205–7209; Angew. Chem. 2018, 130, 7323–7327.
A. Maity, D. C. Powers, Synlett 2019, 30, 257–262.
J. Lalevée, N. Blanchard, M.-A. Tehfe, M. Peter, F. Morlet-Savary, D.
Gigmes, J. P. Fouassier, Polym. Chem. 2011, 2, 1986–1991.
L. Wang, J. Liu, Eur. J. Org. Chem. 2016, 2016, 1813–1824.
C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5322–5363.
S. Fukuzumi, K. Ohkubo, Org. Biomol. Chem. 2014, 12, 6059–6071.
D. A. Nicewicz, T. M. Nguyen, ACS Catal. 2014, 4, 355–360.
N. A. Romero, D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–10166.
M. Kawase, T. Kitamura, Y. Kikugawa, J. Org. Chem. 1989, 54, 3394–
3403.
[29]
[30]
[31]
[32]
This work was supported by
(Emergence@INC 2019 program).
a grant from the CNRS
[33]
[34]
[35]
[36]
Conflict of interest
[37]
Y. Kikugawa, E. Miyazawa, T. Sakamoto, HETEROCYCLES 2003, 59,
149.
The authors declare no conflict of interest.
[38]
[39]
Y. Amano, S. Nishiyama, Tetrahedron Lett. 2006, 47, 6505–6507.
T. Dohi, A. Maruyama, Y. Minamitsuji, N. Takenaga, Y. Kita, Chem.
Commun. 2007, 1224–1226.
[40]
[41]
H. Togo, Y. Suzuki, Y. Ishiwata, HETEROCYCLES 2010, 82, 339.
T. Dohi, N. Takenaga, K. Fukushima, T. Uchiyama, D. Kato, S. Motoo,
H. Fujioka, Y. Kita, Chem. Commun. 2010, 46, 7697–7699.
M. A. Miranda, H. Garcia, Chem. Rev. 1994, 94, 1063–1089.
E. Alfonzo, F. S. Alfonso, A. B. Beeler, Org. Lett. 2017, 19, 2989–2992.
Keywords: hypervalent iodine • pyrylium • aerobic photoredox
reaction • dual organocatalysis
[42]
[43]
[1]
[2]
C. Willgerodt, J. Für Prakt. Chem. 1886, 33, 154–160.
V. V. Zhdankin, P. J. Stang, Chem. Rev. 2008, 108, 5299–5358.
4
This article is protected by copyright. All rights reserved.