R.I. Duclos, Jr / Chemistry and Physics of Lipids 111 (2001) 111–138
125
2.22. (2S,3R,4E)-i-
(1%l1)-2-amino-4-octadecene-1,3-diol (glucosyl-
sphingosine, GlcSph) (22)
D
-Glucopyranosyl-
re-chromatographed (80:20 CH2Cl2/MeOH) to
give pure cerebroside 23 (37 mg, 5.3×10−5 mol,
91%) (Schmidt and Kla¨ger, 1985; Schmidt and
Zimmermann, 1986b, 1988; Shibuya et al., 1992;
Zimmermann et al., 1988) as a white solid that was
homogeneous: TLC (80:20 CH2Cl2/MeOH) Rf
0.52; m.p. 147–150°C (Lit. (Shibuya et al., 1992)
m.p. 179–180.5°C (needles from MeOH/H2O)); 1H
Through a stirred solution of azide 21 (32 mg,
6.6×10−5 mol, 100 mol%) in 1:1 pyridine/water
was bubbled H2S for 2 d. The solvent was removed
and the residue chromatographed (60:30:5 CHCl3/
MeOH/aq NH4OH). The crude product was re-
chromatographed (60:30:5 CHCl3/MeOH/aq
NH4OH) to give amine 22 (27 mg, 5.8×10−5 mol,
88%) (Schmidt and Zimmermann, 1986b, 1988;
Zimmermann et al., 1988) as a white solid which
was homogeneous: TLC (60:30:5 CHCl3/MeOH/aq
NMR (DMSO-d6, 32°C) l Glc, 4.08 (d, 1H, J1%,2%
=
7.7 Hz, 1%), 2.98 (ddd, 1H, J1%,2%=7.7, J2%,2%-OH=3.7,
J2%,3%=9.1, Hz, 2%), 4.96 (d, 1H, J2%,2%-OH=3.7 Hz,
2%-OH), 3.14 (ddd, 1H, J2%,3%=9.1, J3%,3%-OH=4.8,
J3%,4%=8.2 Hz, 3%), 4.86 (d, 1H, J3%,3%-OH=4.8 Hz,
3%-OH), 3.04 (ddd, 1H, J3%,4%=8.2, J4%,4%-OH=4.9,
J4%,5%=9.6 Hz, 4%), 4.84 (d, 1H, J4%,4%-OH=4.9 Hz,
4%-OH), 3.09 (ddd, 1H, J4%,5%=9.6, J5%,6a%=5,
J5%,6b%=1.7 Hz, 5%), 3.44 (ddd, 1H, J5%,6a%=5, J6a%,6%-
OH=5.8, J6a%,6b%=11.6 Hz, 6a%), 3.67 (ddd, 1H,
J5%,6b%=1.7, J6b%,6%-OH=5.8, J6a%,6b%=11.6 Hz, 6b%),
4.44 (t, 1H, J6a%,6%-OH=J6b%,6%-OH=5.8 Hz, 6%-OH);
Sph, 3.42 (dd, 1H, J1a,1b=10.1, J1a,2=3.6 Hz, 1a),
3.96 (dd, 1H, J1a,1b=10.1, J1b,2=4.9 Hz, 1b), 3.78
(dddd, 1H, J1a,2=3.6, J1b,2=4.9, J2,2-NH=9.1,
1
NH4OH) Rf 0.29; H NMR (2:1 CDCl3/CD3OD)
l Glc, 4.30 (d, 1H, J1%,2%=7.5 Hz, 1%), 3.22–3.48 (m,
4H, 2%, 3%, 4%, 5%), 3.71 (dd, 1H, J5%,6a%=4, J6a%,6b%=12
Hz, 6a%), 3.87 (m, 1H, 6b%); Sph, 3.82 (dd, 1H,
J1a,1b=10, J1a,2=3 Hz, 1a), 3.92 (dd, 1H, J1a,1b
=
10, J1b,2=7 Hz, 1b), 3.10 (m, 1H, 2), 4.14 (dd, 1H,
J
J
2,3=5.5, J3,4=7.2 Hz, 3), 5.44 (dd, 1H, J3,4=7.2,
4,5=15.3 Hz, 4), 5.81 (dt, 1H, J4,5=15.3, J5,6
=
6.6 Hz, 5), 2.08 (dt, 2H, J5,6=6.6, J6,7=6.7 Hz, 6),
1.15–1.50 (m, 22H, 7–17), 0.88 (t, 3H, J17,18=6.3
Hz, 18).
J2,3=8.1 Hz, 2), 7.44 (d, 1H, J2,2-NH=9.1, 2-NH),
3.89 (ddd, 1H, J2,3=8.1, J3,3-OH=5.6, J3,4=7.1,
Hz, 3), 4.82 (d, 1H, J3,3-OH=5.6 Hz, 3-OH), 5.36
(dd, 1H, J3,4=7.1, J4,5=15.4 Hz, 4), 5.54 (dt, 1H,
2.23. (2S,3R,4E)-i-D-Glucopyranosyl-
(1%l1)-2-(hexadecanoylamido)-4-octadecene-1,3-
diol (cerebroside, glucosylceramide, GlcCer) (23)
J
4,5=15.4, J5,6=6.6 Hz, 5), 1.94 (m, 2H, 6), 1.28
(m, 2H, 7), 1.18–1.27 (m, 20H, 8–17), 0.85 (t, 3H,
17,18=6.9 Hz, 18); FA, 2.03 (t, 2H, J2,3=7.4 Hz,
J
2), 1.45 (m, 2H, 3), 1.18–1.27 (m, 24H, 4–15), 0.85
(t, 3H, J15,16=6.9 Hz, 16); 13C NMR (DMSO-d6,
32°C) l Glc, 103.76 (1%), 73.45 (2%), 76.32 (3%), 70.01
(4%), 76.79 (5%), 61.01 (6%); Sph, 68.97 (1), 53.03 (2),
70.70 (3), 131.26 (4), 131.34 (5), 31.66 (6), 28.62–
29.00 (7–15), 31.21 (16), 21.99 (17), 13.79 (18); FA,
171.78 (NCꢀO), 35.55 (2), 25.30 (3), 28.62–29.00
(4–13), 31.21 (14), 21.99 (15), 13.79 (16); 1H NMR
(2:1 CDCl3/CD3OD) l Glc, 4.27 (d, 1H, J1%,2%=7.8
Hz, 1%), 3.26 (dd, 1H, J1%,2%=7.8, J2%,3%=8.9, Hz, 2%),
4.42 (dd, 1H, J2%,3%=8.9, J3%,4%=8.8 Hz, 3%), 3.37 (dd,
1H, J3%,4%=8.8, J4%,5%=9.0 Hz, 4%), 3.29 (ddd, 1H,
J4%,5%=9.0, J5%,6a%=5.3, J5%,6b%=2.6 Hz, 5%), 3.72 (dd,
1H, J5%,6a%=5.3, J6a%,6b%=12.0 Hz, 6a%), 3.87 (dd, 1H,
J5%,6b%=2.6, J6a%,6b%=12.0 Hz, 6b%); Sph, 3.59 (dd,
1H, J1a,1b=10.1, J1a,2=3.2 Hz, 1a), 4.16 (dd, 1H,
To a vigorously stirred solution of glucosylsphin-
gosine 22 (27 mg, 5.8×10−5 mol, 100 mol%) in 0.9
ml of pure THF was added 0.9 ml of 1:1 NaOAc–
3H2O/H2O. A solution of palmitoyl chloride (18
mg, 65×10−5 mol, 110 mol%, prepared from
palmitic acid, a sample of which had been methy-
lated and determined to be 0.04% myristic acid,
99.81% palmitic acid, and 0.15% stearic acid by gas
chromatography using 5% DEGS-PS on 100/120
supelcoport at 160°C) in 0.17 ml of THF was added
over 1 min, and the heterogeneous mixture stirred
vigorously for 2 h. The mixture was concentrated,
then partitioned between 5 ml of H2O and 10 ml
of 3:1 CH2Cl2/MeOH. The organic phase was
combined with additional 3:1 CH2Cl2/MeOH ex-
tracts (2×10 ml), dried briefly, and concentrated.
The crude product was filtered through a short
column (80:20 CH2Cl2/MeOH). The product was
J
J
1a,1b=10.1, J1b,2=4.6 Hz, 1b), 4.00 (ddd, 1H,
1a,2=3.2, J1b,2=4.6, J2,3=7.4 Hz, 2), 4.10 (dd,
1H,
J2,3=7.4, J3,4=7.5 Hz, 3), 5.46 (dd,