218
SUFRIN ET AL.
ANTIMICROB. AGENTS CHEMOTHER.
alogs of 5Ј-methylthioadenosine as trypanocides. Antimicrob. Agents Che-
mother. 35:1315–1320.
9. Balasegaram, M., S. Harris, F. Checchi, S. Ghorashian, C. Hamel, and U.
Karunakara. 2006. Melarsoprol versus eflornithine for treating late-stage
Gambian trypanosomiasis in the Republic of the Congo. Bull. W. H. O.
84:783–790.
Taken together, these observations indicate that the potent
trypanocidal effects of HETT and 3Ј-deoxy-HETA are elicited
by their interactions with a novel, unidentified molecular tar-
get(s). Since neither analog is a substrate of Tryp-MTA-Pase,
their potential for selective toxicity against trypanosomes may
be diminished. This concern needs to be clarified in future
studies. We now recognize that the trypanocidal effects of
HETA analogs are not always dependent upon their initial
phosphorolytic cleavage by Tryp-MTA-Pase. However, we
consider the limited ability of mammalian MTA-Pase to cleave
HETA to be a common characteristic of HETA analogs, which
protects these compounds from metabolism by their host and
enhances their bioavailability to bloodstream trypanosomes.
Our long-term goal is to develop new HETA analogs with
improved in vivo properties compared with those of HETA, a
compound which has already been demonstrated to have a
broad spectrum of curative effects (summarized in Table 7).
HETT is by far the most potent trypanocide that we have
identified in vitro; and further studies with this compound are
warranted to determine its biochemical properties, to identify
its molecular targets, and to compare its in vivo trypanocidal
effects with those of HETA.
10. Beachum, L. M. 1979. Convenient preparation of 5Ј-chloro-2Ј,5Ј-dideoxya-
denosine. J. Org. Chem. 44:3100–3101.
11. Berens, R. L., E. C. Krug, and J. J. Marr. 1995. Purine and pyrimidine
metabolism, p. 89–117. In J. J. Marr and M. Muller (ed.), Biochemistry and
molecular biology of parasites. Academic Press, Inc., New York, NY.
12. Cartini-Farina, M., A. Oliva, G. Romeo, G. Napolitano, M. De Rosa, A.
Giambacorta, and V. Zappia. 1979. 5Ј-Methylthioadenosine phosphorylase
from Caldariella acidophila. Eur. J. Biochem. 101:317–324.
13. Coward, J. K., N. C. Motola, and J. D. Moyer. 1977. Polyamine biosynthesis
in rat prostate. Substrate and inhibitor properties of 7-deaza analogues of
decarboxylated S-adenosylmethionine and 5Ј-methylthioadenosine. J. Med.
Chem. 20:500–505.
14. Dardonville, C. 2005. Recent advances in antitrypanosomal chemotherapy:
patent literature 2002–2004. Expert Opin. Ther. Patents 15:1–17.
15. Della Ragione, F., and A. E. Pegg. 1983. Effect of analogues of 5Ј-methyl-
thioadenosine on cellular metabolism. Biochem. J. 210:429–435.
16. Evans, G. B., R. H. Furneaux, V. L. Schramm, V. Singh, and P. C. Tyler.
2004. Targeting the polyamine pathways with transition-state analogue in-
hibitors of 5Ј-methylthioadenosine phosphorylase. J. Med. Chem. 47:3275–
3281.
17. Fish, W. R., J. J. Marr, R. L. Berens, D. L. Looker, D. J. Nelson, S. LaFon,
and A. E. Balber. 1985. Inosine analogs as chemotherapeutic agents for
African trypanosomes: metabolism in trypanosomes and efficacy in tissue
culture. Antimicrob. Agents Chemother. 27:33–36.
18. Ghoda, L. Y., T. M. Savarese, C. H. Northup, R. E. Parks, Jr., J. Garofalo,
L. Katz, B. B. Ellenbogen, and C. J. Bacchi. 1988. Substrate specificities of
5Ј-deoxy-5Ј-methylthioadenosine phosphorylase from Trypanosoma brucei
brucei and mammalian cells. Mol. Biochem. Parasitol. 27:109–118.
19. Goldberg, B., D. Rattendi, D. Lloyd, J. R. Sufrin, and C. J. Bacchi. 1998. The
effects of intermediates of methionine metabolism and nucleoside analogs
on S-adenosylmethionine transport by Trypanosoma brucei brucei and a drug-
restistant Trypanosoma brucei rhodesiense. Biochem. Pharmacol. 56:95–103.
20. Goldberg, B., D. Rattendi, D. Lloyd, J. R. Sufrin, and C. J. Bacchi. 2001. In
situ kinetic characterization of methylthioadenosine transport by the aden-
osine transporter (P2) of the African Trypanosoma brucei brucei and Trypano-
soma brucei rhodesiense. Biochem. Pharmacol. 61:449–457.
21. Goldberg, B., N. Yarlett, D. Rattendi, D. Lloyd, and C. J. Bacchi. 1997. Rapid
methylation of cell proteins and lipids in Trypanosoma brucei. J. Eukaryot.
Microbiol. 44:345–351.
22. Goldberg, B., N. Yarlett, J. R. Sufrin, D. Lloyd, and C. J. Bacchi. 1997. A
unique transporter of S-adenosylmethionine in African trypanosomes.
FASEB J. 11:256–260.
23. Hanna, N. B., K. G. Upadha, C. R. Petrie, R. K. Robins, and G. R. Revankar.
1986. Synthesis of certain 5Ј-substituted derivatives of ribavirin and tiazofu-
ran. Nucleosides Nucleotides 5:343–362.
24. Hirumi, H., and K. Hirumi. 1989. Continuous cultivation of Trypanosoma
brucei bloodstream forms in a medium containing a low concentration of
serum protein without feeder cell layers. J. Parasitol. 75:985–989.
25. Holy, A. 1975. Aliphatic analogues of nucleosides, nucleotides and olignucle-
otides. Coll. Czech. Chem. Commun. 40:187–214.
26. Kikugawa, K., K. K. Izuka, Y. Higuchi, H. Hirayama, and M. Ichino. 1972.
Platelet aggregation inhibitors. 2. Inhibition of platelet aggregation by 5Ј-,
2Ј-, 6Ј- and 8Ј-substituted adenosines. J. Med. Chem. 15:387–390.
27. Kuhn, R., and W. Jahn. 1965. Vom adenosine abgeleitete thioather und
S-oxide. Chemistry (Berlin) 98:1699–1704.
28. Kung, P.-P., L. R. Zehnder, J. J. Meng, S. W. Kupchinsky, D. J. Skalitzkt,
M. C. Johnson, K. A. Maegley, A. Ekker, L. A. Kuhn, P. W. Rose, and L. A.
Bloom. 2005. Design, synthesis and biological evaluation of novel human
5Ј-deoxy-5Јmethylthioadenosine phosphorylase (MTAP) substrates. Bioorg.
Med. Chem. Lett. 15:2829–2833.
ACKNOWLEDGMENTS
These studies were supported in part by grants 920082 (to J.R.S.)
and 95094 (to C.J.B.) from the United Nations Development Pro-
gramme/World Bank/World Health Organization Special Programme
for Research and Training in Tropical Diseases and Public Health
Service grant AI32975 (to J.R.S.). NMR and mass spectra were pro-
vided by the Roswell Park Cancer Institute NMR and Biopolymer
Core Facilities, which are supported in part by NCI core grant
CA16056 to the Roswell Park Cancer Institute. Support for the syn-
thesis of HET-immucillin A was from NIH and Science and Technol-
ogy grants to Industrial Research Ltd., Lower Hutt, New Zealand, and
the Albert Einstein College of Medicine.
We thank Pharmacia & Upjohn, Inc. (Kalamazoo, MI), for the
generous gift of tubercidin. HET-immucillin A was synthesized by
Peter C. Tyler of Industrial Research Ltd. and was provided by Vern
L. Schramm of the Albert Einstein College of Medicine.
REFERENCES
1. Anisuzzaman, A. K. M., and R. L. Whistler. 1978. Selective replacement of
primary hydroxyl groups in carbohydrates: preparation of some carbohydrate
derivatives containing halomethyl groups. Carbohydr. Res. 61:511–518.
2. Bacchi, C. J., J. Garofalo, M. A. Ciminelli, D. Rattendi, B. Goldberg, P. P.
McCann, and N. Yarlett. 1993. Resistance to DL-␣-difluoromethylornithine
by clinical isolates of Trypanosoma brucei rhodesiense: role of S-adenosyl-
methionine. Biochem. Pharmacol. 46:471–481.
3. Bacchi, C. J., B. Goldberg, D. Rattendi, T. E. Gorrell, A. J. Spiess, and J. R.
Sufrin. 1999. Metabolic effects of a methylthioadenosine phosphorylase sub-
strate analog on African trypanosomes. Biochem. Pharmacol. 57:89–96.
4. Bacchi, C. J., P. P. McCann, H. C. Nathan, S. H. Hutner, and A. Sjoerdsma.
1982. Antagonism of polyamine metabolism—a critical factor in chemother-
apy of African trypanosomiasis. Adv. Polyamine Res. 4:221–231.
5. Bacchi, C. J., H. C. Nathan, A. B. Clarkson, E. J. Bienen, A. J. Bitonti, P. P.
McCann, and A. Sjoerdsma. 1987. Effects of the ornithine decarboxylase
inhibitors DL-alpha-difluoromethyl-ornithine and alpha-monofluoromethyl-
dehydroornithine methyl ester alone and in combination with suramin
against Trypanosoma-brucei brucei central-nervous-system models. Am. J.
Trop. Med. Hyg. 36:46–52.
6. Bacchi, C. J., H. C. Nathan, N. Yarlett, B. Goldberg, P. P. McCann, A. J.
Bitonti, and A. Sjoerdsma. 1992. Cure of murine Trypanosoma brucei
rhodesiense infections with an S-adenosylmethionine decarboxylase inhibitor.
Antimicrob. Agents Chemother. 32:2736–2740.
7. Bacchi, C. J., K. Sanabria, A. J. Spiess, M. Vargas, C. J. Marasco, Jr., L. M.
Jiminez, B. Goldberg, and J. R. Sufrin. 1997. In vivo efficacies of 5Ј-meth-
ylthioadenosine analogs as trypanocides. Antimicrob. Agents Chemother.
41:2108–2112.
29. Legros, D., G. Ollivier, M. Gastellu-Etchegorry, C. Paquet, C. Burri, J.
Jannin, et. al. 2002. Treatment of human African trypanosomiasis—present
situation and needs for research and development. Lancet Infect. Dis. 2:437–
440.
30. Marasco, C. J., Jr., D. L. Kramer, J. Miller, C. W. Porter, C. J. Bacchi, D.
Rattendi, L. Kucera, N. Iyer, R. Bernacki, P. Pera, and J. R. Sufrin. 2002.
Synthesis and evaluation of analogues of 5Ј-([(Z)-4-amino-2-butenyl]meth-
ylamino)-5Ј-deoxyadenosine (MDL73811) as inhibitors of tumor cell growth,
trypanosomal growth and HIV-1 infectivity. J. Med. Chem. 45:5112–5122.
31. Marasco, C. J., Jr., P. J. Pera, A. J. Spiess, R. J. Bernacki, and J. R. Sufrin.
2005. Improved synthesis of -D-6-methylpurine riboside and antitumor ef-
fects of the -D- and ␣-D-anomers. Molecules 10:1015–1020.
32. Meyers, R. W., and R. H. Abeles. 1989. Conversion of 5-S-ethyl-5-thio-D-
ribose to ethionine in Klebsiella pneumoniae. Basis for the selective toxicity of
5-S-ethyl-5-thio-D-ribose. J. Biol. Chem. 264:10547–10551.
8. Bacchi, C. J., J. R. Sufrin, H. C. Nathan, A. J. Spiess, T. Hannan, J.
Garofalo, K. Alecia, L. Katz, and N. Yarlett. 1991. 5Ј-Alkyl-substituted an-