Communication
ChemComm
Notes and references
1 For reviews on olefin metathesis, see: (a) M. Jawiczuk, A. Marczyk
and B. Trzaskowski, Catalysts, 2020, 10, 887; (b) P. Compain,
Adv. Synth. Catal., 2007, 349, 1829–1846; (c) S. Lwin and
I. E. Wachs, ACS Catal., 2014, 4, 2505–2520; (d) J. Suriboot,
H. S. Bazzi and D. E. Bergbreiter, Polymers, 2016, 8, 140–162;
(e) C. S. Higman, J. A. M. Lummiss and D. E. Fogg, Angew. Chem.,
´
Int. Ed., 2016, 55, 3552–3565; ( f ) S. Fustero, A. Simon-Fuentes,
P. Barrio and G. Haufe, Chem. Rev., 2015, 115, 871–930;
(g) Y.-J. Hu, L.-X. Li, J.-C. Han, L. Min and C.-C. Li, Chem. Rev.,
2020, 120, 5910–5953; (h) S. L. Mangold and R. H. Grubbs, Chem.
Sci., 2015, 6, 4561–4569; (i) S. Monfette and D. E. Fogg, Chem. Rev.,
2009, 109, 3783–3816.
2 M. R. Becker, R. B. Watson and C. S. Schindler, Chem. Soc. Rev.,
2018, 47, 7867–7881.
3 For reviews on s-bond metathesis, see: (a) R. Waterman, Organo-
metallics, 2013, 32, 7249–7263; (b) H. Ito, J. Synth. Org. Chem. Jpn.,
2008, 66, 1168–1177; (c) J. M. Asensio, D. Bouzouita, P. W. N. M. van
Leeuwen and B. Chaudret, Chem. Rev., 2020, 120,
1042–1084; (d) H. Tsurugi, K. Yamamoto, H. Nagae, H. Kaneko
and K. Mashima, Dalton Trans., 2014, 43, 2331–2343; (e) R. N. Perutz
and S. Sabo-Etienne, Angew. Chem., Int. Ed., 2007, 46,
2578–2592.
Fig. 3 Mechanistic studies on the present formal C–S bond metathesis of
thiols. The reaction conditions are indicated, and yields were determined by
GC. (a) 3a as a starting material instead of 1a. (b) BHT addition as a radical
scavenger. (c) Cross-coupling reaction between 1a and 4a. n.d. = not detected.
4 (a) E. A. Ilardi, E. Vitaku and J. T. Njardarson, J. Med. Chem., 2014,
57, 2832–2842; (b) D. A. Boyd, Angew. Chem., Int. Ed., 2016, 55,
15486–15502.
5 For examples on catalysis poisoning by sulfur compounds, see:
(a) M. Wolf, C. Schu¨ler and O. Hinrichsen, J. CO2 Util., 2019, 32,
80–91; (b) F. Ju, M. Wang, H. Luan, P. Du, Z. Tang and H. Ling,
In addition, when a Grignard reagent, phenylmagnesium
bromide (4a), was added under the Ni–Pd/HAP-catalyzed metath-
esis conditions described in Fig. 3c, the corresponding cross-
coupled biphenyl 5a was produced in 81% yield, whilst 5a was
hardly produced without Ni–Pd/HAP (Fig. 3c). On the contrary,
biphenyl 5a was obtained in a much lower yield when the cross-
coupling reaction between thioether 2a and 4a was performed
(Fig. S6, ESI†). Thus, under the cross-coupling conditions, the
oxidative adduct of thiols to Ni species probably reacted with the
Grignard reagent to produce the corresponding biphenyl via a
ligand exchange/reductive elimination (Fig. S7, ESI†). The reaction
mechanism of the present C–S bond metathesis is proposed
as follows based on the aforementioned results and previous
studies (Fig. 1b):7,8 (i) oxidative addition of thiols to Ni species
at the C–S bond; (ii) ligand exchange between Ni–SH species and
thiols to form H2S and Ni thiolate species; and (iii) reductive
elimination to produce the desired thioethers.
This work was financially supported by JSPS KAKENHI Grant
No. 19H02509. A part of this work was conducted at the Advanced
Characterization Nanotechnology Platform of the University of
Tokyo, supported by ‘‘Nanotechnology Platform’’ of the Ministry
of Education, Culture, Sports, Science and Technology (MEXT),
Japan. We thank Mr Hiroyuki Oshikawa (The University of Tokyo)
for his assistance with the HAADF-STEM and EDS analyses. We
also thank Dr Hironori Ofuchi (Japan Synchrotron Radiation
Research Institute, SPring-8) for giving great support for XAFS
measurements in BL14B2 (Proposal No. 2019B1820), Dr Akiko
Nozaki and Dr Tokuhiko Okamoto (Aichi Synchrotron Radiation
Center, AichiSR) for giving many support for XAFS measurements
in BL11S2 (Proposal No. 201905093).
¨
¨
RSC Adv., 2018, 8, 33354–33360; (c) J. Koningen and K. Sjostrom,
Ind. Eng. Chem. Res., 1998, 37, 341–346; (d) D. Laprune,
D. Farrusseng, Y. Schuurman, F. C. Meunier, J. A. Z. Pieterse,
A. M. Steele and S. Thorpe, Appl. Catal., B, 2018, 221, 206–214;
(e) S. G. Murray and F. R. Hartley, Chem. Rev., 1981, 81, 365–414.
6 A. Saxena, A. Kumar and S. Mozumdar, J. Mol. Catal. A: Chem., 2007,
269, 35–40.
7 Z. Lian, B. N. Bhawal, P. Yu and B. Morandi, Science, 2017, 356,
1059–1063.
8 T. Delcaillau, A. Bismuto, Z. Lian and B. Morandi, Angew. Chem., Int.
Ed., 2020, 59, 2110–2114.
9 T. Yatabe, X. Jin, N. Mizuno and K. Yamaguchi, ACS Catal., 2018, 8,
4969–4978.
10 For examples on stabilization of Ni(0) by alloying with other metals,
see: (a) Y. Qu, T. Chen and G. Wang, Appl. Surf. Sci., 2019, 465,
888–894; (b) S. Han, Y. Liu, J. Li, R. Li, F. Yuan and Y. Zhu, Catalysts,
2018, 8, 200; (c) J.-W. Zhang, K.-K. Sun, D.-D. Li, T. Deng, G.-P. Lu
and C. Cai, Appl. Catal., A, 2019, 569, 190–195.
11 H. Nishida, M. Kimata, T. Ogata and T. Kawai, J. Environ. Chem.
Eng., 2017, 5, 2815–2819.
12 The details of Ni–Pd bimetallic structures on HAP are discussed in
ESI†.
13 For examples on hydrogen spillover, see: (a) M. A. Vannice and
W. C. Neikam, J. Catal., 1971, 20, 260–263; (b) Z. Hu, X. Yong, D. Li
and R. T. Yang, J. Catal., 2020, 381, 204–214; (c) M. Xiong, Z. Gao,
P. Zhao, G. Wang, W. Yan, S. Xing, P. Wang, J. Ma, Z. Jiang, X. Liu,
J. Ma, J. Xu and Y. Qin, Nat. Commun., 2020, 11, 4773;
(d) C. R. O’Connor, M. A. van Spronsen, T. Egle, F. Xu,
H. R. Kersell, J. Oliver-Meseguerie, M. Karatok, M. Salmeron,
R. J. Madix and C. M. Friend, Nat. Commun., 2020, 11, 1844.
14 R. D. Neal, R. A. Hughes, P. Sapkota, S. Ptasinska and S. Neretina,
ACS Catal., 2020, 10, 10040–10050.
15 For the details on physical mixture of Ni/HAP and Pd/HAP under an
H2 atmosphere, see ESI† (Tables S4 and S5).
16 R. A. Sheldon, M. Wallau, I. W. C. E. Arends and U. Schuchardt,
Acc. Chem. Res., 1998, 31, 485–493.
17 For the reuse test of Ni–Pd/HAP, see ESI† (Fig. S8–S10 and Table S6).
18 For optimization of Ni/Pd ratios, supports, solvents, and reaction
temperatures, see ESI† (Tables S7–S10).
Conflicts of interest
There are no conflicts to declare.
This journal is © The Royal Society of Chemistry 2021
3752 | Chem. Commun., 2021, 57, 3749–3752