6
42
S. Thurow et al. / Tetrahedron Letters 52 (2011) 640–643
Table 2
a
SH [bmim][SeO (OCH )]
Synthesis of disulfides according method B
2
3
S
2
S
MW, 30 ºC, air
Entry
Time (min)
Product yield
1a
98
98
96
96
94
S
S
1
00
1
15
8
0
0
0
1
a
6
4
9
8%
MeO
S
20
0
S
2
3
20
15
OMe
1
2
3
4
5
1
d
Runs
9
8%
Cl
2 3
Figure 2. Reuse of [bmim][SeO (OCH )] under microwave irradiation.
S
S
orated. The inferior, ionic liquid phase was dried under vacuum
and reused. The selenium ionic liquid maintained its good level
of oxidation activity even after being recycled four times as shown
in Figure 2. The product 1a was obtained in 98%, 98%, 96%, 96%, and
Cl
1
9
g
9%
9
4% yields after successive cycles.
3
In conclusion, [bmim][SeO (OCH )] has proved to be an efficient
S
S
4
5
6
30
20
15
2
medium for the oxidation of aromatic, aliphatic, and functionalized
thiols. The Se-ionic liquid acts both as solvent and catalyst and is
easily recovered and utilized for further oxidation reactions. The
reactions are accelerated by microwaves and the desired disulfides
were obtained in good to excellent yields.
1
1%
j
9
S
N
S
S
N
S
1
l
Acknowledgments
9
7%
We are grateful to FAPERGS (FAPERGS/PRONEX 10/0005-1 and
S
1
0/0027-4), CAPES, FINEP and CNPq for the financial support.
S
References and notes
1
m
9
5%
1
.
(a) Bodanszky, M. Principles Pept. Synth. 1984, 307; (b) Jocelyn, P. C.
Biochemistry of the Thiol Group; American Press: New York, 1992; (c) Kanda,
Y.; Fukuyama, T. J. Am. Chem. Soc. 1993, 115, 8451; (d) Palmer, B. D.; Newcastle,
G. W.; Thompson, A. M.; Boyd, M.; Showalter, H. D. H.; Sercel, A. D.; Fry, D. W.;
Kraker, A. J.; Dennyyrosine, W. A. J. Med. Chem. 1995, 38, 58; (e) Schmidt, B.;
Lindman, S.; Tong, W.; Lindeberg, G.; Gogoll, A.; Lai, Z.; Thornwall, M.;
Synnergren, B.; Nilson, A.; Welch, C. J.; Sohtell, M.; Westerlund, C.; Nyberg, F.;
Karlen, A.; Hallberg, A. J. Med. Chem. 1997, 40, 903; (f) Lyukmanova, E. N.;
Shulepko, M. A.; Tikhonov, R. V.; Shenkarev, Z. O.; Paramonov, A. S.; Wulfson, A.
N.; Kasheverov, I. E.; Ustich, T. L.; Utkin, Y. N.; Arseniev, A. S.; Tsetlin, V. I.;
Dolgikh, D. A.; Kirpichnikov, M. P. Biochemistry (Moscow) 2009, 74, 1142.
(a) Uemura, S. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, 1991; p 757; (b) Oae, S. Organic Sulfur Chemistry: Structure
and Mechanism; CRC Press: Boca Raton, FL, 1991; (c) Cremlyn, R. J. An
Introduction to Organosulfur Chemistry; Wiley & Sons: New York, 1996.
Maiti, S. N.; Spevak, P.; Singh, M. P.; Micetich, R. G. Synth. Commun. 1988, 18,
575.
a
Yields are given for pure isolated products.
good to excellent yields (Table 1). Diphenyl disulfide 1a was ob-
tained in 98% isolated yield after 3 h at 60 °C (Table 1, entry 1).
Diaryl disulfides containing electron donating (Table 1, entries
2
–4) and electron withdrawing groups (Table 1, entries 5–8), could
be obtained in high yields. Good yields of oxidation were obtained
using 2-amino-4-chlorobenzenethiol and 2-naphthalenethiol (Ta-
ble 1, entries 9 and 10). Excellent yield of the disulfide was ob-
tained with 2-mercaptobenzothiazole but this reaction was
performed at 100 °C (Table 1, entry 11). Satisfactory results were
achieved using benzylic or alkylic thiols yielding the corresponding
disufides 1l–q in a range of 80–99% (Table 1, entries 12–17). Addi-
2.
3
.
.
4
(a) Joshi, A. V.; Bhusare, S.; Baidossi, M.; Qafisheh, N.; Sasson, Y. Tetrahedron
Lett. 2005, 46, 3583; (b) Shaabani, A.; Tavasoli-Rad, F.; Lee, D. G. Synth. Commun.
tionally, the amino acid
L-cysteine, which is involved in a large
number of biological processes, is converted into cystine 1r with
2
005, 35, 571; (c) Ali, M. H.; McDermott, M. Tetrahedron Lett. 2002, 43, 6271;
(d) Christoforou, A.; Nicolaou, G.; Elemes, Y. Tetrahedron Lett. 2006, 47, 9211;
e) Raghavan, S.; Rajender, A.; Joseph, S. C.; Rasheed, M. A. Synth. Commun.
001, 31, 1477; (f) Zhong, P.; Guo, M. P. Synth. Commun. 2001, 31, 1825; (g)
(
2
8
7% yield (Table 1, entry 18).
In order to obtain an efficient protocol in terms of energy econ-
omy, we performed these reactions under microwave irradiation.
Thus, the mixture of benzenethiol (1.0 mmol) and [bmim][-
(OCH )] was irradiated under stirring and fortunately, after
2 3
5 min at 30 °C, diphenyl disulfide 1a was obtained in 98% (meth-
od B). To extend the scope of method B, other organothiols were
irradiated with microwaves and the corresponding disulfides
shown in Table 2 were obtained in excellent yields.
Finally, a study regarding the recovering and reusing of the ionic
liquid was also performed using the method B. After the total oxi-
dation of benzenethiol, the product was extracted with petroleum
ether (3 Â 5 mL). The upper phase was dried and the solvent evap-
Misra, A. K.; Agnihotri, G. Synth. Commun. 2004, 34, 1079; (h) Alam, A.;
Takaguchi, Y.; Tsuboi, S. Synth. Commun. 2005, 35, 1329; (i) Liu, K. T.; Tong, Y. C.
Synthesis 1978, 669; (j) Shah, S. T. A.; Khan, K. M.; Fecker, M.; Voelter, W.
Tetrahedron Lett. 2003, 44, 6789; (k) Hirano, M.; Yakabe, S.; Fukami, M.;
Morimoto, T. Synth. Commun. 1997, 27, 2783.
SeO
1
5. (a) Demkowicz, S.; Rachon, J.; Witt, D. Synthesis 2008, 2033; (b) Vlahov, I. R.;
Santhapuram, H. K. R.; Wang, Y.; Kleindl, P. J.; You, F.; Howard, S. J.; Westrick,
E.; Reddy, J. A.; Leamon, C. P. J. Org. Chem. 2007, 72, 5968; (c) Hunter, R.; Caira,
M.; Stellenboom, N. J. Org. Chem. 2006, 71, 8268.
1
1
6
.
(a) Salehi, P.; Farrokhi, A.; Gholizadeh, M. Synth. Commun. 2001, 31, 2777; (b)
Khazaei, A.; Zolfigol, M. A.; Rostami, A. Synthesis 2004, 2959; (c) Leino, R.;
Lönnqvist, J. E. Tetrahedron Lett. 2004, 45, 8489; (d) Demir, A. S.; Igdir, A. C.;
Mahasneh, A. S. Tetrahedron 1999, 55, 12399; (e) Shaabani, A.; Mirzaei, P.; Lee,
D. G. Catal. Lett. 2004, 97, 119; (f) Shaabani, A.; Bazgir, A.; Lee, D. G. Synth.
Commun. 2004, 34, 3595; (g) Silveira, C. C.; Mendes, S. R. Tetrahedron Lett. 2007,