Table 1 Results of the Heck reaction with the imine catalyst 1–3
Catalysts
(mmol/1025
ArXa
Alkenea
Solventb
Base
)
t/h
T/°C
TON
Yield (%)c
PhI
PhI
PhI
PhI
PhI
PhI
PhI
PhI
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
styrene
methyl crotonate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
methyl acrylate
dihydropyran
indene
NMP
Dioxane
NMP
DMA
Dioxane
Mesitylene
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
NMP
Na2CO3
Na2CO3
NEt3
NEt3
NEt3
NEt3
Na2CO3
NEt3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
Na2CO3
NEt3
1 (3.5)
1 (3.5)
1 (3.5)
1 (3.5)
1 (3.5)
1 (3.5)
1 (0.46)
1 (0.35)
1 (3.5)
1 (3.5)
1 (3.5)
1 (3.5)
1 (3.5)
2 (3.5)
3 (3.5)
3 (70)
3 (70)
3 (70)
3 (70)
3 (10.5)
2 (7.0)
b
9
40
1
140
140
140
140
140
140
140
140
140
140
140
140
140
140
140
120
120
120
140
120
140
142900
36900
142900
93700
100d
25d
100d
66d
75d
93d
100d
100d
74e
16
16
16
32
18
80
39
12
43
25
22
22
68
115
68
22
24
130
107200
130300
1087000
1429000
105700
140000
138600
137100
140000
142900
142900
4300
PhI
PhI
98f
4-MeO-C6H4I
PhBr
4-CHO-C6H4I
97g
96d
98h
100d
100d
60i
PhI
PhI
PhI
PhI
PhI
PhI
PhI
PhBr
5100
3000
7100
38100
72j
cyclohexene
42i
dihydrofuran
dihydrofuran
methyl acrylate
100i
80i
NMP
NMP
Na2CO3
132900
93d
a
c
Amounts: ArX, 5 mmol; alkene, 6 mmol; Na2CO3, 3.5 mmol; NEt3 7 mmol. NMP = N-methylpyrrolidone; DMA = N,N-dimethylacetamide.
Determined by GC, based on the aryl halide. Methyl trans-cinnamate. Stilbene, cis:trans = 1:7. Methyl trans-3-methylcinnamate:methyl cis-
3-methylcinnamate:3-methylenebenzenepropanoic acid methyl ester:methyl 4-phenylbut-2-enoate (10:1:1:1). Methyl trans-p-methoxycinnamate.
h Methyl trans-p-formylcinnamate. i Mixture of isomers of the phenyl derivatives of the olefins.j Mixture of isomers, main product: 2-phenylindene.
d
e
f
g
182/1144. Crystallographic data are available in .cif format from the RSC
far as we are aware, our results with the relatively inactive
∑ As far as we are aware, this is the highest TON reported for a quantitative
Heck reaction. A TON of 1120000 was reported for the reaction of
In summary, the metallated imine palladium(ii) complexes
iodobenzene with methyl acrylate after 13 days at 95 °C, but the yield was
show exceedingly high catalytic activity and yields in the Heck
56%. See ref. 3.
bromobenzene and the commonly used acrylate esters are
unsurpassed.
reaction, including reactions of the non-activated bromo-
** Catalysis with chlorobenzene was accomplished by addition of NaI and
benzene. The activities observed are among the highest reported
for the Heck reaction. The new catalyst system is very thermally
and air stable. Further investigations aimed at clarification of
the scope and mechanism of these reactions are in progress.
We thank Dr L. J. W. Shimon for the X-ray analysis of
complex 1. This work was supported by The Israel Science
Foundation, Jerusalem, Israel, and by the MINERVA Founda-
tion, Munich, Germany. M. O. thanks the Deutsche For-
schungsgemeinschaft for a fellowship. A. O. thanks the
Minerva Foundation for a fellowship. D. M. is the holder of the
Israel Matz Professorial Chair of Organic Chemistry.
NiBr2. However, the reaction was very slow, resulting in 10% yield and 190
TON after 21 h at 140 °C.
1 Reviews: R. F. Heck, Palladium Reagents in Organic Synthesis,
Academic Press, London, 1985; R. F. Heck, Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Flemming, Pergamon, Oxford, New
York, 1991, vol. 4, p. 833; V. V. Grushin and H. Alper, Chem. Rev.,
1994, 94, 1047; A. de Meijere and F. E. Meyer, Angew. Chem., Int. Ed.
Engl., 1994, 33, 2379; W. Carbri and I. Candiani, Acc. Chem. Res.,
1995, 28, 2.
¨
2 W. A. Herrmann, C. Brossmer, K. Ofele, C.-P. Reisinger, T. Riermeier,
M. Beller and H. Fisher, Angew. Chem., Int. Ed. Engl., 1995, 34, 1844;
M. Beller, T. H. Riermeier, S. Haber, H.-J. Kleiner and W. A. Herrmann,
Chem. Ber., 1996, 129, 1259; W. A. Herrmann, C. Brossmer, C.-P.
Notes and references
¨
Reisinger, T. H. Riermeier, K. Ofele and M. Beller, Chem. Eur. J., 1997,
3, 1357.
† The role of the dimethylglycine additive is unclear and stabilized
palladium colloids may be involved in this case. See ref. 6.
3 B. L. Shaw, S. D. Perera and E. A. Staley, Chem. Commun., 1998,
1361.
4 B. L. Shaw and S. D. Perera, Chem. Commun., 1998, 1863.
5 W. A. Herrmann, M. Elison, J. Fischer, C. Ko¨cher and G. R. J. Artus,
Angew. Chem., Int. Ed. Engl., 1995, 34, 2371.
6 M. T. Reetz, E. Westermann, R. Lohmer and G. Lohmer, Tetrahedron
Lett., 1998, 39, 8449.
7 M. Ohff, A. Ohff, M. E. van der Boom and D. Milstein, J. Am. Chem.
Soc., 1997, 119, 11687.
8 M. Beller and T. H. Riermeier, Eur. J. Inorg. Chem., 1998, 1, 29.
9 B. L. Shaw, New. J. Chem., 1998, 22, 77.
10 M. Ohff, A. Ohff and D.Milstein, Israel Patent Appl., 121346 (filed on
20.07.1997).
11 W. Cabri, I. Candiani, A. Bedeschi and R. Santi, Synlett, 1992, 871.
12 For example, G. Zhao, Q. G. Wang and T. C. Mak, J. Chem. Soc.,
Dalton Trans., 1998, 1241.
13 For high yield Heck reactions with chlorobenzene and other unactivated
aryl chlorides, see Y. Ben-David, M. Portnoy, M. Gozin and D.
Milstein, Organometallics, 1992, 11, 1995; M. Portnoy, Y. Ben-David
and D. Milstein, Organometallics, 1993, 12, 4734; M. T. Reetz, G.
Lohmer and R. Schwickardi, Angew. Chem., Int. Ed., 1998, 37, 481.
‡ With phenanthroline ligands, only 40 TON or less were obtained.
Bipyridine and bis-oxazoline ligands were inactive with methyl acrylate and
resulted in very low yields and turnovers with other alkenes. See ref. 11.
3
§ 1: dH(C6D6) 0.85, 1.15 (d, JHH 6.6, 3H, CH3), 1.06 (s, 3H, CH3), 3.20
3
(sept, JHH 6.6, 1H, CH), 6.46, 7.29 (m, 1H, Haryl), 6.77 (m, 2H, Haryl);
dc(C6D6) 14.0, 20.8, 21.9, 54.4 (s, CH/CH3), 116.8 (q, JCF 288, CF3), 124.3,
126.7, 129.6, 132.5 (s, Caryl), 166.0 (q, 2JCF 38, OCNO), 179.2 (s, CNN). For
2: dH(C6D6) 2.22 (s, 3H, CH3), 2.62, 2.82, 3.00, 3.24 (m, 1H, CH2), 6.71,
6.84 (m, 3JHH 7.6/7.4, 1H, Haryl), 7.01 (d, 3JHH 7.4, 1H, Haryl), 7.48 (d, 3JHH
7.6, 1H, Haryl); dC(C6D6) 24.5 (s, CH3), 49.6, 69.7 (s, CH2), 123.4, 125.1,
130.1, 132.1, 131.8, 149.2 (s, Caryl), 174.4 (s, CNN), 181.1 (s, OCNO). For
3: dH(C6D6) 0.70 (d, 3JHH 6.6, 6H, CH3), 0.84 (m, 1H, left part of CH2), 1.14
(m, 1H, CH), 1.82 (ddd, 1H, right part of CH2), 2.16 (s, 3H, CH3), 3.09 (m,
3
1H, CH), 3.37 (m, 2H, CH2), 6.75 (t, JHH 7.6, 1H, Haryl), 6.87, 7.13 (m,
3JHH 7.6, 1H, Haryl), 7.50 (d, 3JHH 7.6, 1H, Haryl); dC(C6D6) 21.8, 23.5, 24.6,
25.2 (s, CH/CH3), 43.5, 75.5 (s, CH2), 60.4 (s, CH), 123.5, 125.2, 130.2,
132.0, 132.4, 149.3 (s, Caryl), 173.2 (s, CNN), 181.1 (s, OCNO).
¶ Crystal data for 1: C26H28N2O4F6Pd2, M = 759.30, yellow, plates, 0.2 3
0.2 3 0.05 mm3, monoclinic, P2(1)/c (No. 14), a = 17.044(3), b =
16.976(3), c = 19.725(4) Å, b = 97.75° (3), from 25 reflections, T = 110
K, V = 5655(2) Å3, Z = 8, Dc = 1.784 Mg m23, m = 1.346 mm21, Mo-Ka,
12993 independent reflections, Rint = 0.0481, final R1 = 0.0618. CCDC
Communication 8/09883B
358
Chem. Commun., 1999, 357–358