P d (OAc)2-Ca ta lyzed Oxid a tive Cou p lin g Rea ction of Ben zen es w ith
Olefin s in th e P r esen ce of Molybd ova n a d op h osp h or ic Acid u n d er
Atm osp h er ic Dioxygen a n d Air
Masayuki Tani, Satoshi Sakaguchi, and Yasutaka Ishii*
Department of Applied Chemistry, Faculty of Engineering, Kansai University,
Suita, Osaka 564-8680, J apan
ishii@ipcku.kansai-u.ac.jp
Received October 23, 2003
The direct oxidative coupling reaction of benzenes with alkenes bearing an electron-withdrawing
group was successfully achieved by the use of Pd(OAc)2/molybdovanadophosphoric acid (HPMoV)
as the key catalyst under O2 or air atmosphere. Thus, the reaction of benzene with ethyl acrylate
under air (1 atm) assisted by Pd(OAc)2/HPMoV afforded ethyl cinnamate as a major product in
satisfactory yield (74%). This catalytic system could be extended to the coupling reactions between
various substituted benzenes and alkenes through the direct aromatic C-H bond activation. In
the reaction of benzene with ethyl acrylate under O2 (1 atm), the best turn-over number (TON) of
Pd(OAc)2 reached was 121. This reaction provides a green route to cinnamate derivatives, which
are important precursors of a variety of pharmaceuticals.
In tr od u ction
catalytic C-H bond activation of arenes. Since the
success of the activation of aryl C-H bonds through
ortho-chelation by Ru complexes by Murai et al.,3 similar
catalytic reactions that can activate the ortho C-H bond
of substituted arenes have been reported.4 However, it
is still very difficult to carry out the direct activation of
the C-H bond of nonsubstituted aromatic compounds
such as benzene through a catalytic process.5 Fujiwara
and co-worker have reported the stoichiometric and
catalytic oxidative coupling of arenes with alkenes through
the cleavage of the aromatic C-H bond assisted by Pd
compounds.6 In 1978, Matveev et al. reported the Pd(II)-
catalyzed arylation of ethylene in the presence of molyb-
dovanadophosphoric acid.7 The Pd-catalyzed oxidative
The arylation of olefins (Heck-Mizoroki reaction) is
frequently used as an important reaction in the synthesis
of arene derivatives. Although the reaction is applicable
to the coupling between various aryl halides and alkenes,
there have been several drawbacks in this methodology.
For example, the formation of undesired waste salts
which come from aryl halides used as starting materials
is unavoidable, and a stoichiometric amount or more of
a base must be added to complete the reaction. As a
result, the reaction is difficult to carry out in large scale
in industry except for the synthesis of expensive phar-
maceutical materials. Development of a novel catalytic
method for the synthesis of arene derivatives through the
direct aromatic C-H bond activation is a challenging
subject in synthetic organic chemistry, since there has
been a growing demand for the construction of a waste-
free synthetic method.1
(3) (a) Murai, S.; Kakiuchi, F.; Sekine, Tanaka, Y.; Kamatani, A.;
Sonoda, M.; Chatani, N. Nature 1993, 366, 529-531. (b) Kakiuchi, F.;
Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N.; Murai,
S. Bull. Chem. Soc. J pn. 1995, 68, 62-83. (c) Kakiuchi, F.; Yamakazu,
M.; Chatani, N.; Murai, S. Chem. Lett. 1996, 111-112. (d) Kakiuchi,
F.; Sato, T.; Yamakazu, M.; Chatani, N.; Murai, S. Chem. Lett. 1999,
19-20. (e) Kakiuchi, F.; Murai, S. Acc. Chem. Res. 2002, 35, 826-
834.
(4) (a) Miura, M.; Tsuda, T.; Satoh, T.; Nomura, M. Chem. Lett. 1997,
1103-1104. (b) Miura, M.; Tsuda, T.; Satoh, T.; Pivsa-Art, S. J . Org.
Chem. 1998, 63, 5211-5215. (c) Lenges, P. C.; Brookhart, M. J . Am.
Chem. Soc. 1999, 121, 6616-6623. (d) Ritleng, V.; Sutter, J .; Pfeffer,
M.; Sirlin, C. Chem. Comm. 2000, 129-130. (e) Trost, B. M.; Toste, F.
D.; Greenman, K. J . Am. Chem. Soc. 2003, 125, 4518-4526.
(5) (a) Chen, H. Y.; Schlecht, S.; Semple, T. C.; Hartwig, J . F. Science
2000, 287, 1995-1997. (b) Matsumoto, T.; Taube, D. J .; Periana, R.
A.; Taube, H.; Yoshida, H. J . Am. Chem. Soc. 2000, 122, 7414-7415.
(c) Ishiyama, T.; Takagi, J .; Ishida, K.; Miyaura, N.; Anastasi, N. R.;
Hartwig, J . F. J . Am. Chem. Soc. 2002, 124, 390-391. (d) Cho, J . Y.;
Tse, M. K.; Holmes, D.; Maleczka, R. E.; Smith, M. R. Science 2002,
295, 305-308. (e) Tsukada, N.; Mitsuboshi, T.; Setoguchi, H.; Inoue,
Y. J . Am. Chem. Soc. 2003, 125, 12102-12103.
Although several transition metal compounds are
known to activate stoichiometrically the aryl C-H bond,2
a limited number of methods have appeared for the
(1) (a) Activation of unreactive bonds and organic synthesis; Murai,
S., Ed.; Springer: New York, 1999. (b) Dyker, G. Angew. Chem. 1999,
111, 1808-1822; Angew. Chem., Int. Ed. 1999, 38, 1698-1712. (c) J ia,
C.; Kitamura, T.; Fujiwara, Y. Acc. Chem. Res. 2001, 34, 633-639. (d)
J ia, C.; Piao, D.; Oyamada, J .; Kitamura, T.; Fujiwara, Y. Science 2000,
287, 1992-1995. (e) Labinger, J . A.; Bercaw, J . E. Nature (London)
2002, 417, 507-514. (f) Ritleng, V.; Sinlin, C.; Pfeffer, M. Chem. Rev.
2002, 102, 1731-1770.
(2) (a) Moritani, I.; Fujiwara, Y. Tetrahedron Lett. 1967, 1119-1122.
(b) J ones, W. D.; Feher, F. J . Acc. Chem. Res. 1989, 22, 91-100. (c)
Ryabov, A. D. Chem. Rev. 1990, 90, 403-424. (d) Chin, R. M.; Dong,
L.; Duckett, S. B.; Partridge, M. G.; J ones, W. D.; Perutz, R, N. J . Am.
Chem. Soc. 1993, 115, 7685-7695. (e) Gutierrtez, E.; Monge, A.;
Nicasio, M. C.; Poveda, M. L.; Carmona, E. J . Am. Chem. Soc. 1994,
116, 791-792. (f) Shilov, A. E.; Shul’pin, G. B. Chem. Rev. 1997, 97,
2879-2932.
(6) (a) Fujiwara, Y.; Takaki, K.; Taniguchi, Y. Synlett 1996, 591-
599. (b) J ia, C.; Lu, W.; Kitamura, T.; Fujiwara, Y. Org. Lett. 1999, 1,
2097-2100 and references therein.
(7) Taraban’ko, V. E.; Kozhevnikov, I. V.; Matveev, K. I. Kinet. Katal.
1978, 19, 1160-1166.
10.1021/jo035568f CCC: $27.50 © 2004 American Chemical Society
Published on Web 01/21/2004
J . Org. Chem. 2004, 69, 1221-1226
1221