tially both simplify the synthesis of certain types of advanced
intermediates and reduce the steps involved in the synthesis
of pharmaceuticals and agrochemicals.6
Scheme 1. Synthesis of C2-Symmetric Thiourea 3
Previously described transition-metal-catalyzed reactions
of diazonium salts with high affinity ligands (such as
phosphines) are deficient because of their low catalytic
activity, modest yields, and loss of diazonium salts as a result
of decomposition.3n,p,s To avoid this problem, a ligand-free
catalytic process has frequently been used.3j,n,o,r-v In 1997,
the Sengupta group reported that a ligand-free palladium-
catalyzed coupling reaction using diazonium salts with aryl
boronic acids produced good yields when 10 mol % of Pd-
(OAc)2 was included in the reaction.3t Later Andrus’ group
reported a similar coupling with 2 mol % of Pd(OAc)2;
however, the yield dropped to 21%.3p
To improve this reaction, new ligand-based metal-
catalyzed reactions needed to be developed. Very recently,
two groups reported that the imidazolium carbene based
palladium complex3q,w effectively catalyzed the Heck and
Suzuki reactions with arenediazonium tetrafluoroborate. In
this report, we describe our successful efforts to synthesize
a novel type of C2-symmetric thiourea that is air-, moisture-,
and heat-stable and can be successfully used in the Suzuki
and Heck reactions at room temperature with Pd(OAc)2 (1
mol %) under aerobic conditions and without added base.
Historically, the strong coordinative and adsorptive prop-
erties of sulfur-containing compounds have rendered them
totally ineffective as catalysts, causing them to be categorized
as catalyst poisons.7 Recently, efforts have been made to
synthesize sulfur-containing ligands, and several notable
successes have been reported.8 Complexes of thiourea with
transition metals were first reported in 1894,9 followed by
their crystal study.10
synthesis, but most often their use has been restricted to the
polymer-supported palladium or rhodium catalysts.11
The pioneering work of Chiusoli demonstrated that
thiourea was a useful ligand in Pd-catalyzed carbonylations.12
On the basis of these results, we began to study the function
of thiourea in the Pd-catalyzed carbonylation.13 Encouraged
by our initial studies, we decided to attempt to synthesize a
palladium complex based on a C2-symmetric thiourea ligand,
which would be able to catalyze the arenediazonium-based
cross-coupling reaction. If these studies were successful, we
reasoned that we might have a ligand that could be used for
asymmetric synthesis of biaryl compounds.14
To this end, ligand 3 (see Scheme 1) was designed, and
synthesized from the diamine 1. Synthetically, commercially
available (1R,2R)-(-)-1,2-diaminocyclohexane 1 (Aldrich)
was coupled with o-methyl bromobenzene to give 2,15 which
was then condensed with thiophosgene to generate 3.16 Its
structure was confirmed by the X-ray analysis.
In early attempts to test the effect of ligand 3 in the Pd-
catalyzed coupling reaction of the diazonium salt 417a (Table
(6) (a) Bader, R. R.; Baumeister, P.; Blaser, H.-U. Chimia 1996, 50, 99.
(b) Baumeister, P.; Seifert, G.; Steiner, H. (Ciba-Geigy AG), EP Patent
584043, 1992. (c) Nelson, M. L.; Ismail, M. Y.; McIntyre, L.; Bhatia, B.;
Viski, P.; Hawkins, P.; Rennie, G.; Andorsky, D.; Messersmith, D.;
Stapleton, K.; Dumornay, J.; Sheahan, P.; Verma, A. K.; Warchol, T.; Levy,
S. B. J. Org. Chem. 2003, 68, 5838.
(7) (a) Hegedus, L. L.; McCabe, R. W. In Catalyst Poisoning; Marcel
Dekker: New York, 1984. (b) Hutton, A. T. In ComprehensiVe Coordination
Chemistry; Wilkinson, G., Gillard, R. D., McCleverty, J. A., Eds.;
Pergamon: Oxford, U.K., 1984; Vol. 5, p 1151. (c) Kondo, T.; Mitsudo,
T.-A. Chem. ReV. 2000, 100, 3205. (d) Dubois, M. R. Chem. ReV. 1989,
89, 1.
(8) (a) Chesney, A.; Bryce, M. R. Tetrahedron: Asymmetry 1996, 7,
3247. (b) Chelucci, G.; Cabras, A. Tetrahedron: Asymmetry 1996, 7, 965.
(c) Chesney, A.; Bryce, M. R.; Chubb, R. W. J.; Batsanov, A. S.; Howard,
J. A. K. Tetrahedron: Asymmetry 1997, 8, 2337. (d) Morimoto, T.;
Tachibana, K.; Achiwa, K. Synlett 1997, 783. (e) Koning, B.; Meetsma,
A.; Kellogg, R. M. J. Org. Chem. 1998, 63, 5533. (f) Anderson, J. C.;
James, D. S.; Mathias, J. P. Tetrahedron: Asymmetry 1998, 9, 753. (g)
Chelucci, G.; Bacchi, A.; Fabbri, D.; Saba, A.; Ulgheri, F. Tetrahedron
Lett. 1999, 40, 553. (h) Bergbreiter, D. E.; Osburn, P. L.; Liu, Y.-S. J. Am.
Chem. Soc. 1999, 121, 9531. (i) Gruber, A. S.; Zim, D.; Ebeling, G.;
Monteiro, A. L.; Dupont, J. Org. Lett. 2000, 2, 1287. (j) Broussier, R.;
Bentabet, E.; Laly, M.; Richard, P.; Kuz’mina, L. G.; Wheatley, N.; Kalck,
P.; Gautheron; B. J. Organomet. Chem. 2000, 613, 77. (k) Pollino, J. M.;
Weck, M. Org. Lett. 2002, 4, 753.
Recently, we have observed an increase in the use of
thiourea derivatives as ligands and catalysts in organic
(3) For Heck reaction with arenediazonium salt, see: (a) Kikukawa, K.;
Nagira, K.; Terao, N.; Wada, F.; Matsuda, T. Bull. Chem. Soc. Jpn. 1979,
52, 2609. (b) Akiyama, F.; Miyazaki, H.; Kaneda, K.; Teranishi, S.;
Fujiwara, Y.; Abe, M.; Taniguchi, H. J. Org. Chem. 1980, 45, 2359. (c)
Kikukawa, K.; Nagira, K.; Wada, F.; Matsuda, T. Tetrahedron 1981, 37,
31.(d) Kikukawa, K.; Maemura, K.; Kiseki, Y.; Wada, F.; Matsudo, T. Giam,
C. S. J. Org. Chem. 1981, 46, 4885. (e) Ikenaga, K.; Kikukawa, K.; Matsuda,
T. J. Chem. Soc., Perkin Trans. 1 1986, 1959. (f) Ikenaga, K.; Matsumoto,
S.; Kikukawa, K.; Matsuda, T. Chem. Lett. 1988, 873. (g) Wang, Y.; Pang,
Y.; Zhang, Z.; Hu, H. Synthesis 1991, 967. (h) Sengupta, S.; Bhattacharyya,
S. J. Chem. Soc., Perkin Trans. 1 1993, 1943. (i) Beller, M.; Fischer, H.;
Ku¨hlein, K. Tetrahedron Lett. 1994, 35, 8773. (j) Beller, M.; Ku¨hlein, K.
Synlett 1995, 441. (k) Sengupta, S.; Sadhukhan, S. K.; Bhattacharyya, S.
Tetrahedron 1997, 53, 2213. (l) Sengupta, S.; Sadhukhan, S. K.; Bhatta-
charyya, S. Guha, J. J. Chem. Soc., Perkin Trans. 1 1998, 407. (m) Colas,
C.; Goelder, M. Eur. J. Org. Chem. 1999, 1357. (n) Brunner, H.; Le
Cousturier de Courcy, N.; Geneˆt, J.-P. Tetrahedron Lett. 1999, 40, 4815.
(o) Severino, E. A.; Correia, C. R. D. Org. Lett. 2000, 2, 3039. (p) Andrus,
M. B.; Song, C.; Zhang, J. Org. Lett. 2002, 4, 2079. (q) Selvakumar, K.;
Zapf, A.; Spannenberg, A.; Beller, M. Chem. Eur. J. 2002, 8, 3901. For
Suzuki reaction with arenediazonium salt, see: (r) Darses, S.; Jeffery, T.;
Geneˆt, J.-P.; Brayer, J.-L,; Demoute, J.-P. Tetrahedron Lett. 1996, 37, 3857.
(s) Darses, S.; Geneˆt, J.-P.; Brayer, J.-L,; Demoute, J.-P. Tetrahedron Lett.
1997, 38, 4393. (t) Sengupta, S.; Bhattacharyya, S. J. Org. Chem. 1997,
62, 3405. (u) Darses, S.; Michaud, G.; Geneˆt. J.-P. Eur. J. Org. Chem.
1999, 1875. (v) Willis, D. M.; Strongin, R. M. Tetrahedron Lett. 2000, 41,
6271. (w) Andrus, M. B., Song, C. Org. Lett. 2001, 3, 3761.
(9) Kurnakov, N. S. J. Prakt. Chem. 1894, 50, 485.
(10) (a) Schafer, M.; Curran, C. Inorg. Chem. 1966, 5, 265. (b) Gosavi,
R. K.; Agarwaia, U.; Rao, C. N. R. J. Am. Chem. Soc. 1967, 89, 235. (c)
Gosavi, R. K.; Rao, C. N. R. J. Inorg. Nucl. Chem. 1967, 29, 1937. (d)
O’Connor, J. E.; Amma, E. L. Chem. Commun. 1968, 892. (e) Luth, H. T.;
Truter, M. R. J. Chem. Soc. A 1968, 1879. (f) Figgis, B. N.; Reynolds, P.
A. J. Chem. Soc., Dalton Trans. 1986, 125. (g) Berta, D. A.; Spofford, W.
A.; Boldrini, P.; Amma, E. L. Inorg. Chem. 1970, 9, 136. (h) Cauzzi, D.;
Costa, M.; Cucci, N.; Graiff, C.; Grandi, F.; Predieri, G.; Tiripicchio, A.;
Zanoni, R. J. Organomet. Chem. 2000 593-594, 431. (i) Rh: Cauzzi, D.;
Lanfranchi, M.; Marzolini, G.; Predieri, G.; Tiripicchio, A.; Costa, M.;
Zanoni, R. J. Organomet. Chem. 1995, 488, 115. (j) Cauzzi, D.; Costa, M.;
Gonsalvi, L.; Pellinghelli, M. A.; Predieri, G.; Tiripicchio, A.; Zanoni, R.
J. Organomet. Chem. 1997, 541, 377.
(4) Doyle, M. P.; Bryker, W. J. J. Org. Chem. 1979, 44, 1572.
(5) (a) Negishi, E.; Coperet, C.; Ma, S.; Liou, S.-Y.; Liu, F. Chem. ReV.
1996, 96, 365. (b) Grigg, R.; Longanathan, V.; Santhakumar, V.; Sridharan,
V.; Teasdale, A. Tetrahedron Lett. 1991, 32, 687.
222
Org. Lett., Vol. 6, No. 2, 2004