Evaluation Only. Created with Aspose.PDF. Copyright 2002-2021 Aspose Pty Ltd.
Organic Letters
Letter
(i) Kiefer, G.; Jeanbourquin, L.; Severin, K. Angew. Chem., Int. Ed.
2013, 52, 6302. Diaziridinone as an oxidant: (j) Zhu, Y.; Xiong, T.;
Han, W.; Shi, Y. Org. Lett. 2014, 16, 6144. Pure O2 as an oxidant:
(k) Hua, S.-K.; Hu, Q.-P.; Ren, J.; Zeng, B.-B. Synthesis 2013, 45, 518.
Atmospheric oxygen as an oxidant: (l) Cahiez, G.; Moyeux, A.;
Buendia, J.; Duplais, C. J. Am. Chem. Soc. 2007, 129, 13788. (m) Liu,
W.; Lei, A. Tetrahedron Lett. 2008, 49, 610. (n) Mayer, M.; Czaplik, W.
M.; von Wangelin, A. J. Synlett 2009, 2009, 2919. (o) Aparna, P. I.;
Bhat, B. R. J. Mol. Catal. A: Chem. 2012, 358, 73. (p) Bhat, A. P. I.;
Inam, F.; Bhat, B. R. Eur. J. Org. Chem. 2013, 2013, 7139. (q) Bhat, A.
P. I.; Inam, F.; Bhat, B. R. RSC Adv. 2013, 3, 22191.
In summary, we have developed a novel organic oxidant 1f
that acts as a four-electron oxidant for the homocoupling of
Grignard reagents. A low catalyst loading of up to 2 mol % of 1f
can also be used for catalytic homocoupling reactions in air to
give the desired coupled products in high yields. We envision
that 1f will be highly utilized in the future toward a variety of
oxidative C−C coupling reactions or the oxidation of organic
substrates with atmospheric oxygen.
ASSOCIATED CONTENT
* Supporting Information
■
(5) Recent reviews: (a) Cahiez, G.; Moyeux, A.; Cossy, J. Adv. Synth.
Catal. 2015, 357, 1983. (b) Li-Yuan Bao, R.; Zhao, R.; Shi, L. Chem.
Commun. 2015, 51, 6884. (c) Knappke, C.E. I.; von Wangelin, A. J.
Chem. Soc. Rev. 2011, 40, 4948.
S
The Supporting Information is available free of charge on the
(6) Detailed mechanistic studies: Murarka, S.; Mobus, J.; Erker, G.;
̈
Muck-Lichtenfeld, C.; Studer, A. Org. Biomol. Chem. 2015, 13, 2762.
(7) Irie, M. Chem. Rev. 2000, 100, 1685.
̈
Representative experimental procedure, spectroscopic
data for novel oxidants 1c, 1d, 1e, 1f and coupling
products 3; Tables for stoichiometric homocoupling
reactions using 1f; Cartesian coordinates of 1, 4, and 5;
Consideration of the structures of 4 and 5 using 19F
NMR and GIAO calculations (PDF)
(8) Reactivity of 1a with Grignard reagents: Yamada, S.; Konno, T.;
Ishihara, T.; Yamanaka, H. J. Fluorine Chem. 2005, 126, 125.
(9) GC analysis.
(10) The structure of 4 was identified by comparison of calculated
19F chemical shifts at the GIAO/B3LYP/6-31+G(2d,p) level and
observed chemical shift. See the Supporting Information.
(11) Paprott, G.; Seppelt, K. J. Am. Chem. Soc. 1984, 106, 4060.
(12) In the ESR spectrum, a broad singlet peak at the position of g =
2.00309 was observed at room temperature, which is evidence of the
presence of a radical in the THF solution. The radical can be expected
to be the cyclopentadienyl radical 5 generated by one-electron
oxidation of the cyclopentadienyl anion 4, considering the g-value is in
good agreement with those of the cyclopentadienyl radical species
reported previously. See references: (a) Sitzmann, H.; Boese, R.
Angew. Chem., Int. Ed. Engl. 1991, 30, 971. (b) Tian, Y.; Uchida, K.;
Kurata, H.; Hirao, Y.; Nishiuchi, T.; Kubo, T. J. Am. Chem. Soc. 2014,
136, 12784.
(13) The present structure 5 was also predicted by comparison of
calculated 19F chemical shifts (NMR2, ●) at the GIAO/uB3LYP/6-
31+G(2d,p) level and observed chemical shift. See the Supporting
Information.
(14) (a) Stahl, S. S. Science 2005, 309, 1824. (b) McCann, S. D.;
Stahl, S. S. Acc. Chem. Res. 2015, 48, 1756 and references cited therein.
AUTHOR INFORMATION
Corresponding Author
■
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was partially supported by a Grant-in-aid for
Scientific Research on Innovative Areas “Advanced Molecular
Transformations by Organocatalysts” from MEXT, Japan and
the Asahi Glass Foundation. We thank Zeon Corporation for
providing 1a and CPME.
REFERENCES
■
(1) (a) Ciriminna, R.; Pagliaro, M. Org. Process Res. Dev. 2010, 14,
245. (b) Iwabuchi, Y. Chem. Pharm. Bull. 2013, 61, 1197. (c) Wertz, S.;
Studer, A. Green Chem. 2013, 15, 3116.
(2) Recent reviews for stoichiometric transition-metal-free oxidative
C−C coupling: (a) Sun, C.-L.; Shi, Z.-J. Chem. Rev. 2014, 114, 9219.
(b) Kita, Y.; Dohi, T.; Morimoto, K. Yuki Gosei Kagaku Kyokaishi
2011, 69, 1241.
(3) (a) Cheng, J.-W.; Luo, F.-T. Tetrahedron Lett. 1988, 29, 1293.
(b) Nishiyama, T.; Seshita, T.; Shodai, H.; Aoki, K.; Kameyama, H.;
Komura, K. Chem. Lett. 1996, 549. (c) Krasovskiy, A.; Tishkov, A.; del
Amo, V.; Mayr, H.; Knochel, P. Angew. Chem., Int. Ed. 2006, 45, 5010.
(d) Ramnial, T.; Taylor, S. A.; Clyburne, J. A. C.; Walsby, C. J. Chem.
Commun. 2007, 2066. (e) Maji, M. S.; Pfeifer, T.; Studer, A. Angew.
Chem., Int. Ed. 2008, 47, 9547. (f) Blangetti, M.; Fleming, P.; O’Shea,
D. F. J. Org. Chem. 2012, 77, 2870. (g) Amaya, T.; Suzuki, R.; Hirao,
T. Chem. - Eur. J. 2014, 20, 653. (h) Murarka, S.; Wertz, S.; Studer, A.
Chimia 2012, 66, 413.
(4) Transition-metal-catalyzed homocoupling of Grignard reagents in
combination with a terminal oxidants: 1,2-Dihaloethanes as an
oxidant: (a) Nagano, T.; Hayashi, T. Org. Lett. 2005, 7, 491.
(b) Cahiez, G.; Chaboche, C.; Mahuteau-Betzer, F.; Ahr, M. Org. Lett.
2005, 7, 1943. (c) Nagano, T.; Hayashi, T. Chem. Lett. 2005, 34, 1152.
(d) Zhou, Z.; Xue, W. J. Organomet. Chem. 2009, 694, 599. (e) Kude,
K.; Hayase, S.; Kawatsura, M.; Itoh, T. Heteroat. Chem. 2011, 22, 397.
(f) Lee, A. S.-Y.; Chen, P.-L.; Chang, Y.-T.; Tsai, H.-T. J. Chin. Chem.
Soc. 2012, 59, 452. (g) Yuan, C.; Fang, Q. RSC Adv. 2012, 2, 8055.
Quinone derivative as an oxidant: (h) García-Lop
́
ez, J.-A.; Çetin, M.;
Greaney, M. F. Org. Lett. 2015, 17, 2649. Nitrous oxide as an oxidant:
D
DOI: 10.1021/acs.orglett.5b02887
Org. Lett. XXXX, XXX, XXX−XXX