10.1002/cctc.202001387
ChemCatChem
COMMUNICATION
1915-1925; g) Y. Du, H. Sheng, A. Astruc, M. Zhu, Chem. Rev. 2020,
120, 526-622.
entry 6). These results suggest that the active catalytic species in
the 3b-mediated reaction seems to be homogeneous. Meanwhile,
the addition of thiophene (2 equiv. relative to Pd) also completely
deactivated 2 (entry 5). This result may indicate that the trinuclear
framework of 2 is not sufficiently supported under the applied
hydrogenation conditions.
In this study, we found that cluster 3b acts as an effective
catalyst for hydrogenation of various alkenes. In contrast, the
mononuclear palladium bis(silyl) complex 4 did not exhibit any
catalytic activity under the reaction condition shown in entry 4 in
Table 1. This result suggests that the tetranuclear cluster
framework is crucial to the catalytic activity. The tetranuclear
[2]
[3]
(a) G. Ertl, In Metal Clusters in Catalysis (Eds. B. C. Gates, L. Guczi, H.
Knözinger), Elsevier: Amsterdam, Netherlands, 1986, pp 577-604; b) J.
-M. Basset, U. Renato, In Modern Surface Organometallic Chemistry
(Eds. J. -M. Basset, R. Psaro, D. Roberto, R. Ugo), WILEY-VCH Verlag
GmbH & Co. KGaA: Weinheim.: 2009, pp 1-18.
a) F. Fu, J. Xiang, H. Cheng, L. Cheng, H. Chong, S. Wang, P. Li, S. Wei,
M. Zhu, Y. Li, ACS Catal. 2017, 7, 1860-1867; b) J. Chai, R. Tian, D. Wu,
D. Wei, Q. Xu, Z. Duan, F. Mathey, Dalton Trans. 2018, 47, 13342-
13344; c) N. W. Scott, M. J. Ford, C. Schotes, R. R. Parker, A. C.
Whitwood, I. J. S. Fairlamb, Chem. Sci. 2019, 10, 7898-7906; d) C. J.
Diehl, T. Scattolon, U. Englert, F. Schoenebeck, Angew. Chem. 2019,
131, 217-221; Angew. Chem. Int. Ed. 2019, 58, 211-215; e) M. Lanzi, T.
Cañeque, L. Marchiò, R. Maggi, F. Bigi, M. Malacria, G. Maestri, ACS
Catal. 2018, 8, 144-147; f) C. Cecchini, M. Lanzi, G. Cera, M. Malacria,
G. Maestri, Synthesis, 2019, 51, 1216-1224; g) A. Monfredini, V.
Santacroce, L. Marchiò, R. Maggi, F. Bigi, G. Maestri, M. Malacria, ACS
Sustainable Chem. Eng., 2017, 5, 8205-8212; h) A. Monfredini, V.
Santacroce, P. -A. Deyris, R. Maggi, F. Bigi, G. Maestri, M. Malacria,
Dalton Trans. 2016, 45, 15786-15790; i) Y. Tsuchido, R. Abe, M.
Kamono, K. Tanaka, M. Tanabe, K. Osakada, Bull. Chem. Soc. Jpn.
2018, 91, 858-864; j) M. Tanabe, M. Kamono, K. Tanaka, K. Osakada,
Organometallics 2017, 36, 1929-1935.
framework in
3 is effectively supported by the bridging
organosilylene ligands, which leads to high catalytic performance.
The bridging organosilicon ligands may also play a key role in
activating the molecular hydrogen via -bond metathesis assisted
by the Pd–Si -bonds. The metal–silicon bond has previously
been reported to play an important role in the activation of
molecular hydrogen as well as the transfer of the activated
hydrogen atoms to the C=C bond.[17] One possible reaction
mechanism for the 3-catalyzed hydrogenation would involve the
coordination of molecular hydrogen to the palladium atom (Pd(1)
in Figure S6 and S10 in the Supporting Information) through the
LUMO orbital localized on the palladium atom. Activation of the
H–H bond through the adjacent Pd–Si bond could then occur,
followed by the hydrogenation of the alkene or alkyne. Efforts to
elucidate the details of the underlying reaction mechanism are
currently in progress in our laboratories.
In summary, we have synthesized the planar tetranuclear
palladium cluster 3, wherein the cluster skeleton is effectively
supported by the bridging organosilylene ligands, which enables
3 to act as the active catalyst for the hydrogenation of alkenes.
Compound 3 is an addition to the family of catalytically active
transition-metal clusters, which may bridge molecular-based
complex catalysts and heterogeneous catalysis such as
palladium nanoparticles. Efforts to expand the scope of
applications of such planar palladium clusters are currently in
progress.
[4]
[5]
a) J. G. de Vries, C. J. Elsevier Handbook of Homogeneous
Hydrogenation; Wiley-VCH: Weinheim, 2007; b) S. Nishimura,
Handbook of Heterogeneous Catalytic Hydrogenation for Organic
Synthesis; Wiley-VCH: New York, 2001.
a) Q. -A. Chen, Z. -S. Ye, Y. Duan, Y. -G. Zhou, Chem. Soc. Rev. 2013,
42, 497-511; b) R. van Asselt, C. J. Elsevier, J. Mol. Catal. 1991, 65, L13-
L19; c) M. W. van Laren, C. J. Elsevier, Angew. Chem. 1999, 111, 3926-
3929; Angew. Chem. Int. Ed., 1999, 38, 3715-3717; d) J. Yu, J. B.
Spencer, J. Am. Chem. Soc. 1997, 119, 5257-5258; e) J. W. Sprengers,
J. Wassenaar, N. D. Clement, K. J. Cavell, C. J. Elsevier, Angew. Chem.
2005, 117, 2062-2065; Angew. Chem. Int. Ed. 2005, 44, 2026-2029.
a) V. Jurčík, S. P. Nolan, C. S. J. Cazin, Chem. Eur. J. 2009, 15, 2509-
2511; b) O. Songis, C. S. J. Cazin, Synlett 2013, 24, 1877-1881.
S. Fantasia, J. D. Egbert, V. Jurčík, C. S. J. Cazin, H. Jacobsen, L.
Cavallo, D. M. Heinekey, S. P. Nolan, Angew. Chem. 2009, 121, 5284-
5288; Angew. Chem. Int. Ed. 2009, 48, 5182-5186.
[6]
[7]
[8]
[9]
a) P. D. Harvey, Y. Mugnier, D. Lucas, D. Evrard, F. Lemaître, A. Vallat,
J. Clust. Sci. 2004, 15, 63-89; b) H. I. Moiseev, M. N. Vargaftik, New. J.
Chem. 1998, 1217-1227; c) A. S. Berenblyum, A. G. Knizhnik, S. L. Mund,
J. Organomet. Chem. 1982, 234, 219-235; d) D. Evrard, K. Groison, Y.
Mugnier, P. D. Harvey, Inorg. Chem. 2004, 43, 790-796.
a) Y. Sunada, R. Haige, K. Otsuka, S. Kyushin, H. Nagashima, Nat.
Commun. 2013, 4, 3014/1-3014/7; b) Y. Chen, Y. Sunada, H. Nagashima,
S. Sakaki, Chem. Eur. J. 2016, 22, 1076-1087; c) Y. Sunada, N.
Taniyama, K. Shimamoto, S. Kyushin, H. Nagashima, Inorganics 2017,
5, 84/1-84/12; d) K. Shimamoto, Y. Sunada, Chem. Eur. J. 2019, 25,
3761-3765; e) R. Usui, Y. Sunada, Chem. Commun. 2020, 56, 8464-
8467.
Acknowledgements
This work was supported by Grant in Aid for Scientific Research
(B) (No. 16H04120 and 20H02751) from the Ministry of Education,
Culture, Sports, Science and Technology, Japan, and Yazaki
Memorial Foundation for Science and Technology. The
synchrotron radiation experiments were performed at the BL01B1
of SPring-8 with the approval of the Japan Synchrotron Radiation
Research Institute (JASRI) (Proposal No. 2018B1422).
[10] S. Nakanishi, M. Kawamura, H. Kai, R. -H. Jin, Y. Sunada, H. Nagashima,
Chem. Eur. J. 2014, 20, 5802-5814.
[11] C. G. Francis, S. I. Khan, P. R. Morton, Inorg. Chem. 1984, 23, 3680-
3681.
[12] As described in our previous paper, variable-temperature (VT) 1H NMR
spectra of 3a revealed that its tetranuclear framework is maintained in
solution.9c Unfortunately, the presence of complex multiplet signals for
the cyclopentyl groups prevented us from examining the dynamic
behavior of 3b using VT 1H NMR. Considering the structural similarity
between 3a and 3b, we thus assumed that the tetranuclear framework in
3b is also maintained in solution.
Keywords: palladium • cluster • catalyst • hydrogeneation •
silylene ligand
[1]
a) L. Markó, A. Vizi-Orosz, In Metal Clusters in Catalysis (Eds. B. C.
Gates, L. Guczi, H. Knözinger), Elsevier: Amsterdam, Netherlands, 1986,
pp 89-120; b) R. J. Puddephatt, In Metal Clusters in Chemistry (Eds. P.
Braunstein, L. A. Oro, P. R. Raithby), Wiley-VCH: Toronto, Ontario,
Canada, 1999, pp 604-615. c) R. D. Adams, F. A. Cotton, in Catalysis by
Di and Polynuclear Metal Cluster Complexes, Wiley-VCH, New York
1998; d) P. Buchwalter, J. Rosé, P. Braunstein, Chem. Rev. 2015, 115,
28−126; e) Z. Luo, A. W., Jr. Castleman, S. N. Khanna, Chem. Rev.,
2016, 116, 14456-14492; f) J. Tang, L. Zhao, Chem. Commun. 2020, 56,
[13] X. Cui, K. Burgess, Chem. Rev. 2005, 105, 3272-3296.
[14] a) R. H. Crabtree, H. Felken, G. E. Morris, J. Organomet. Chem. 1977,
141, 205-215; b) R. H. Crabtree, Acc. Chem. Res. 1979, 12, 331-337; c)
J. J. Verendel, O. Pàmies, M. Diéguez, P. G. Andersson, Chem. Rev.
2014, 114, 2130-2169; d) M. G. Schrems, E. Neumann, A. Pfaltz, Angew.
4
This article is protected by copyright. All rights reserved.