X. Cui et al. / Tetrahedron Letters 48 (2007) 163–167
167
7. (a) Buchmeiser, M. R.; Wurst, K. J. Am. Chem. Soc.
1999, 121, 11101; (b) Kawano, T.; Shinomaru, T.; Ueda,
I. Org. Lett. 2002, 4, 2545; (c) Najera, C.; Gil-Moito, J.;
Karlstrum, S.; Falvello, L. R. Org. Lett. 2003, 5,
1451.
8. (a) Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita, T. Synlett
2003, 882; (b) Mino, T.; Shirae, Y.; Sakamoto, M.; Fujita,
T. J. Org. Chem. 2005, 70, 2191.
1155; (i) Yang, Y.-F.; Zhuang, M.; Zeng, C.-X.; Huang,
C.-B.; Luo, M.-F. Chin. J. Chem. 2006, 24, 1309.
18. (a) Dai, M. J.; Liang, B.; Wang, C. H.; You, Z. J.; Xiang,
J.; Dong, G. B.; Chen, J. H.; Yang, Z. Adv. Synth. Catal.
2004, 346, 1669; (b) Yang, D.; Chen, Y. C.; Zhu, N. Y.
Org. Lett. 2004, 6, 1577; (c) Chen, W.; Li, R.; Han, B.; Li,
B.; Chen, Y.; Wu, Y.; Ding, L.; Yang, D. Eur. J. Org.
Chem. 2006, 1177.
9. Mukherjee, A.; Sarkar, A. Tetrahedron Lett. 2005, 46, 15.
10. Cabri, W.; Candiani, I.; Bedeschi, A. J. Org. Chem. 1993,
58, 7421.
11. Li, S. H.; Xie, H. B.; Zhang, S. B.; Lin, Y. J.; Xu, J. N.;
Cao, J. G. Synlett 2005, 1885.
12. Iyer, S.; Kulkarni, G. M.; Ramesh, C. Tetrahedron 2004,
60, 2163.
13. Kovala-Demertzi, D.; Yadav, P. N.; Demertzis, M. A.;
Jasiski, J. P.; Andreadaki, F. J.; Kostas, I. D. Tetrahedron
Lett. 2004, 45, 2923.
14. Gupta, A. K.; Song, C. H.; Oh, C. H. Tetrahedron Lett.
2004, 45, 4113.
15. (a) Park, S. B.; Alper, H. Org. Lett. 2003, 5, 3209; (b)
Xiao, J. C.; Twamley, B.; Shreeve, J. M. Org. Lett. 2004,
6, 3845.
16. (a) Reetz, M. T.; Westermann, E.; Lohmer, R.; Lohmer,
G. Tetrahedron Lett. 1998, 39, 8449; (b) Cui, X.; Li, Z.;
Tao, C.-Z.; Xu, Y.; Li, J.; Liu, L.; Guo, Q.-X. Org. Lett.
2006, 8, 2467.
17. (a) Tao, B.; Boykin, D. W. Tetrahedron Lett. 2003, 44,
7993; (b) Li, J.-H.; Liu, W.-J.; Xie, Y.-X. J. Org. Chem.
2005, 70, 5409; (c) Li, J.-H.; Liang, Y.; Wang, D.-P.; Liu,
W.-J.; Xie, Y.-X.; Yin, D.-L. J. Org. Chem. 2005, 70, 2832;
(d) Zhang, L.; Cui, Y.-C. Acta Chim. Sinica 2005, 63, 924;
(e) Yang, Y.-F.; Zeng, C.-X.; Luo, M.-F.; Li, Q.-L.;
Huang, C.-B. Acta Chim. Sinica 2005, 63, 1469; (f) Yi, H.;
Liu, J. B.; Li, Q.; Tang, J. Chin. Chem. Lett. 2005, 16,
1173; (g) Cui, Y.-C.; Zhao, X.-W.; Zhang, J.-W.; Zhang,
L.; Liu, X.-M. Acta Chim. Sinica 2006, 64, 42; (h) Xie,
Y.-X.; Li, J.-H.; Yin, D.-L. Chin. J. Org. Chem. 2006, 26,
19. (a) Reetz, M. T.; de Vries, J. G. Chem. Commun. 2004,
1559; (b) Liu, L.; Zhang, Y.; Wang, Y. J. Org. Chem.
2005, 70, 6122; (c) Xin, B.; Zhang, Y.; Cheng, K. J. Org.
Chem. 2006, 71, 5725.
20. Very recent examples: (a) Navarro, O.; Marion, N.; Mei,
J.; Nolan, S. P. Chem. Eur. J. 2006, 12, 5142; (b) Guo, M.;
Jiang, F.; He, R. Tetrahedron Lett. 2006, 47, 2033.
21. (a) Zhang, G. Synthesis 2005, 537; (b) Deng, Y.; Gong, L.;
Mi, A.; Liu, H.; Jiang, Y. Synthesis 2003, 337.
22. Yao, Q.; Kinney, E. P.; Yang, Z. J. Org. Chem. 2003, 68,
7528.
23. Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456.
24. Typical experimental procedure for the Heck reaction: A
mixture of phenyl bromide (0.5 mmol, 0.053 mL), styrene
(0.75 mmol, 0.087 mL), Pd(OAc)2 (0.5 · 10ꢀ3 mmol,
0.11 mg), phenylurea (10ꢀ3 mmol, 0.14 mg), and K2CO3
(1 mmol, 0.138 g) in 1 mL of dry DMF was stirred under
Ar at 130 ꢁC for 2 h. After the mixture was washed by
water, extracted by ether and condensed, the residue was
purified by flash column chromatography (hexane) to
afford trans-stilbene (89.3 mg, 99%).
25. Typical experimental procedure for the Suzuki reaction: A
mixture of p-methylphenyl bromide (5 mmol, 0.615 mL),
phenyl boronic acid (7.5 mmol, 0.915 g), Pd(OAc)2 (0.5 ·
10ꢀ3 mmol, 0.11 mg), phenylurea (10ꢀ3 mmol, 0.14 mg),
and K2CO3 (10 mmol, 1.38 g) in methanol/H2O (7.5 mL/
7.5 mL) was stirred at room-temperature for 2 h. After the
mixture was washed by water, extracted by ether and
condensed, the residue was purified by flash column
chromatography (hexane) to afford biphenyl (75.9 mg, 99%).