MIRZA-AGHAYAN ET AL.
11 of 12
3
-(4-methoxyphenyl)acrylate in 85% yield by a coupling
[3] J. Hassan, M. Sevignon, C. Gozzi, E. Schulz, M. Lemaire,
Chem. Rev. 2002, 102, 1359.
reaction of 4-iodoanisole with methyl or butyl
acrylate using GO-poly(methyl methacrylate) supported
palladium catalyst in the presence of tetrabutyl
ammonium bromide as additive and K CO as base at
[
4] D. M. Huryn, Carbanions of Alkaki and Alkaline Earth
Cations:(ii) Selectivity of Carbonyl Addition Reaction, in
Comprehensive Organic Synthesis, (Eds: B. M. Trost,
I. Fleming), Pergamon Press, Oxford 1991, Part, 1 49.
5] R. Mahrwald, D. Evans, Modern aldol reactions.Wiley Online
Library, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
2004, Vol. 1 and 2, 1218.
2
3
ꢀ
1
00 C after 4 hr. The same products were synthesized
[
using PdNPs/rGO-NH nanocomposite catalyst in 98%
yield (entries 3 and 10) in the presence of Et N after 4 hr
at 120 C.
To estimate the reusability of the catalyst, the
coupling reactions were executed several times with
methyl acrylate and iodobenzene in DMF catalyzed by
2
3
ꢀ
[6] B. D. Mather, K. Viswanathan, K. M. Miller, T. E. Long, Prog.
Polym. Sci. 2006, 31, 487.
[7] J. March, Advanced organic chemistry: reactions, mechanisms,
and structure, John Wiley & Sons 1992.
[
[
8] N. Miyaura, A. Suzuki, Chem. Rev. 1995, 95, 2457.
9] K. Sonogashira, J. Organomet. Chem. 2002, 653, 46.
the recovered PdNPs/rGO-NH (4 mg) nanocomposite
2
catalyst. When the reaction was complete, the catalyst
was recovered by centrifugation and washed with ethanol
and dried in vacuum for reuse. The recovered heteroge-
neous catalyst was consecutively exposed to the a further
five runs of the cross-coupling reaction using identical
reaction conditions to the initial run. The results indicate
[
10] R. F. Heck, J. Nolley Jr., J. Org. Chem. 1972, 37, 2320.
[11] P. Das, W. Linert, Coord. Chem. Rev. 2016, 311, 1.
[12] M. Keles, Z. Aydin, O. Serindag, J. Organomet. Chem. 2007,
6
92, 1951.
13] S. M. Sarkar, M. L. Rahman, M. M. Yusoff, RSC Adv. 2015, 5,
9630.
[
[
[
1
14] B. Urbán, D. Srankó, G. Sáfrán, L. Ürge, F. Darvas, J. Bakos,
R. Skoda-Földes, J. Mol. Catal. A 2014, 395, 364.
15] M. Gómez-Martínez, E. Buxaderas, I. M. Pastor, D. A. Alonso,
J. Mol. Catal. A 2015, 404, 1.
that the recovered PdNPs/rGO-NH catalyst is competent
2
for the cross-coupling reaction of methyl acrylate and
iodobenzene into methyl cinnamate in 91% yield even
after six runs (Figure 9).
[16] Y. Lee, M. C. Hong, H. Ahn, J. Yu, H. Rhee, J. Organomet.
Chem. 2014, 769, 80.
[17] D. R. Dreyer, C. W. Bielawski, Carbocatalysis: Chem. Sci. 2011,
2
, 1233.
4
| CONCLUSION
[
18] M. Spiro, Catal. Today 1990, 7, 167.
[
19] M. Mirza-Aghayan, S. Zonoubi, M. M. Tavana,
R. Boukherroub, Ultrason. Sonochem. 2015, 22, 359.
20] M. Mirza-Aghayan, M. M. Tavana, R. Boukherroub,
Tetrahedron Lett. 2014, 55, 342.
A general and efficient procedure was established for the
preparation of palladium nanoparticles loaded onto
diethylenetriamine-functionalized rGO (PdNPs/rGO-
[
NH ) nanocomposite using an ultrasonic method. The
[21] M. Mirza-Aghayan, M. Alizadeh, M. M. Tavana,
2
R. Boukherroub, Tetrahedron Lett. 2014, 55, 6694.
structure and chemical composition of the PdNPs/rGO-
[
[
22] M. Mirza-Aghayan, M. M. Tavana, R. Boukherroub,
Tetrahedron Lett. 2014, 55, 5471.
23] M. Mirza-Aghayan, M. M. Tavana, R. Boukherroub, Cat.
Commun. 2015, 69, 97.
24] C. D. Zangmeister, Chem. Mater. 2010, 22, 5625.
25] A. Yang, J. Li, C. Zhang, W. Zhang, N. Ma, Appl. Surf. Sci.
2015, 346, 443.
NH nanocomposite were fully characterized by several
2
methods. The PdNPs/rGO-NH material was successfully
2
utilized as a heterogeneous catalyst for the coupling
reaction of several aromatic iodo and bromo compounds
with different alkenes via the Mizoroki–Heck reaction.
Furthermore, the heterogeneous catalyst was reused for
six successive runs without a significant diminution in its
catalytic reactivity. This novel and simple procedure is
valuable as the coupling reaction proceeds in great yields
in short times.
[
[
[26] M. Khan, G. H. Albalawi, M. R. Shaik, M. Khan, S. F. Adil,
M. Kuniyil, H. Z. Alkhathlan, A. Al-Warthan, M. R. H.
Siddiqui, J. Saudi Chem. Soc. 2017, 21, 450.
[
[
27] F. Chekin, Bull. Mater. Sci. 2015, 38, 887.
28] M. Mirza-Aghayan, E. Kashef-Azar, R. Boukherroub,
Tetrahedron Lett. 2012, 53, 4962.
[
[
29] C. Vallés, J. D. Núñez, A. M. Benito, Carbon 2012, 50, 835.
30] J. Zhou, Y. Wang, X. Guo, J. Mao, S. Zhang, Green Chem.
ORCID
2
014, 16, 4669.
31] J. Yang, C. Tian, L. Wang, H. Fu, J. Mater. Chem. 2011, 21,
384.
[32] C. Bai, Q. Zhao, Y. Li, G. Zhang, F. Zhang, X. Fan, Catal. Lett.
014, 144, 1617.
[
3
REFERENCES
2
[
[
1] I. Favier, D. Madec, E. Teuma, M. Gomez, Curr. Org. Chem.
011, 15, 3127.
2] A. Fihri, M. Bouhrara, B. Nekoueishahraki, J. -M. Basset,
[
[
33] H. Huang, X. Wang, J. Mater. Chem. 2012, 22, 22533.
34] S. M. Sarkar, M. L. Rahman, K. F. Chong, M. M. Yusoff,
J. Catal. 2017, 350, 103.
2
V. Polshettiwar, Chem. Soc. Rev. 2011, 40, 5181.