ACS Catalysis
Letter
Wiley−VCH: Weinheim, Germany, 2008; pp 111−151. For selected
examples, see: (c) Jeske, G.; Lauke, H.; Mauermann, H.; Schumann,
H.; Marks, T. J. Highly reactive organolanthanides. A mechanistic
study of catalytic olefin hydrogenation by bis-
Activation by f-Block Complexes. Angew. Chem., Int. Ed. 2015, 54,
82−100.
(9) (a) Simpson, S. J.; Turner, H. W.; Andersen, R. A. Hydrogen-
d e u t e r i u m e x c h a n g e : p e r d e u t e r i o h y d r i d o t r i s -
(hexamethyldisilylamido)thorium(IV) and -uranium(IV). J. Am.
Chem. Soc. 1979, 101, 7728−7729. (b) Simpson, S. J.; Turner, H.
W.; Andersen, R. A. Preparation and hydrogen-deuterium exchange of
alkyl and hydride bis(trimethylsilyl)amido derivatives of the actinide
elements. Inorg. Chem. 1981, 20, 2991−2995. (c) Evans, W. J.;
Ulibarri, T. A.; Ziller, J. W. Reactivity of samarium complex
[(C Me ) Sm(μ-H)] in ether and arene solvents. X-ray crystal
(pentamethylcyclopentadienyl) and related 4f complexes. J. Am.
Chem. Soc. 1985, 107, 8111−8118. (d) Molander, G. A.; Winterfeld, J.
Organolanthanide catalyzed hydrogenation and hydrosilylation of
substituted methylenecycloalkanes. J. Organomet. Chem. 1996, 524,
2
75−279. (e) Obora, Y.; Ohta, T.; Stern, C. L.; Marks, T. J.
Organolanthanide-Catalyzed Imine Hydrogenation. Scope, Selectivity,
Mechanistic Observations, and Unusual Byproducts. J. Am. Chem. Soc.
5
5
2
2
1
997, 119, 3745−3755. (f) Getsoian, A. G. B.; Hu, B.; Miller, J. T.;
structures of the internally metalated complex (C Me ) Sm(μ-H)(μ-
5 5 2
Hock, A. S. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic
CH C Me )Sm(C Me ), the benzyl complex (C Me ) Sm-
2
5
4
5
5
5
5 2
Hydrogenation of Propylene. Organometallics 2017, 36, 3677−3685.
(
(
(
CH C H )(THF), and the siloxide complex [(C Me ) Sm-
2 6 5 5 5 2
(
6) Recently, s-block metals complexes, including calcium,
THF)] (μ-OSiMe OSiMe O). Organometallics 1991, 10, 134−142.
2
2
2
strontium, barium, and potassium, have made great progress in
d) Evans, W. J.; Champagne, T. M.; Ziller, J. W. Organolutetium
catalytic hydrogenation reactions. In this process, activation of H by
2
Vinyl and Tuck-Over Complexes via C-H Bond Activation. J. Am.
Chem. Soc. 2006, 128, 14270−14271. (e) Booij, M.; Deelman, B. J.;
Duchateau, R.; Postma, D. S.; Meetsma, A.; Teuben, J. H. Carbon-
hydrogen activation of arenes and substituted arenes by the yttrium
hydride (Cp* YH) : competition between Cp* ligand metalation,
the s-block metal complexes probably also occurs by means of σ-bond
metathesis. See: (a) Spielmann, J.; Buch, F.; Harder, S. Early Main-
Group Metal Catalysts for the Hydrogenation of Alkenes with H2.
Angew. Chem., Int. Ed. 2008, 47, 9434−9438. (b) Jochmann, P.;
2
2
Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. A Cationic Calcium
Hydride Cluster Stabilized by Cyclen-Derived Macrocyclic N,N,N,N
Ligands. Angew. Chem., Int. Ed. 2012, 51, 4452−4455. (c) Leich, V.;
Spaniol, T. P.; Maron, L.; Okuda, J. Molecular Calcium Hydride:
Dicalcium Trihydride Cation Stabilized by a Neutral NNNN-Type
Macrocyclic Ligand. Angew. Chem., Int. Ed. 2016, 55, 4794−4797.
arene metalation, and hydrogen/deuterium exchange. Molecular
1
5
structures of Cp* Y(μ-H)(μ-η ,η -CH C Me )YCp* and Cp* Y(o-
2
2
5
4
2
C H PPh CH ). Organometallics 1993, 12, 3531−3540. (f) Pool, J.
6
4
2
2
A.; Bradley, C. A.; Chirik, P. J. A Convenient Method for the
Synthesis of Zirconocene Hydrido Chloride, Isobutyl Hydride, and
Dihydride Complexes Using tert-Butyl Lithium. Organometallics 2002,
(d) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J.
2
1, 1271−1277. (g) Summerscales, O. T.; Batista, E. R.; Scott, B. L.;
Calcium Hydride Cation [CaH]+ Stabilized by an NNNN-type
Macrocyclic Ligand: A Selective Catalyst for Olefin Hydrogenation.
Angew. Chem., Int. Ed. 2017, 56, 12367−12371. (e) Bauer, H.; Alonso,
Wilkerson, M. P.; Sutton, A. D. Reversible Formation of a Cerium-
Bound Terminal Hydride: Ce(C Me SiMe ) (H)(thf). Eur. J. Inorg.
5
4
3 2
Chem. 2016, 2016, 4551−4556. (h) Fegler, W.; Venugopal, A.;
Spaniol, T. P.; Maron, L.; Okuda, J. Reversible Dihydrogen Activation
in Cationic Rare-Earth-Metal Polyhydride Complexes. Angew. Chem.,
Int. Ed. 2013, 52, 7976−7980.
M.; Farber, C.; Elsen, H.; Pahl, J.; Causero, A.; Ballmann, G.; De
̈
Proft, F.; Harder, S. Imine hydrogenation with simple alkaline earth
metal catalysts. Nat. Catal. 2018, 1, 40−47. (f) Shi, X.; Qin, G.; Wang,
Y.; Zhao, L.; Liu, Z.; Cheng, J. Super-Bulky Penta-arylcyclopenta-
dienyl Ligands: Isolation of the Full Range of Half-Sandwich Heavy
Alkaline-Earth Metal Hydrides. Angew. Chem., Int. Ed. 2019, 58,
(
10) (a) Harder, S. Molecular early main group metal hydrides:
synthetic challenge, structures and applications. Chem. Commun.
012, 48, 11165−11177. (b) Mukherjee, D.; Okuda, J. Molecular
Magnesium Hydrides. Angew. Chem., Int. Ed. 2018, 57, 1458−1473.
11) (a) Jacoby, D.; Floriani, C.; Chiesi-Villa, A.; Rizzoli, C.
2
4
356−4360. (g) Bauer, H.; Alonso, M.; Fischer, C.; Rosch, B.; Elsen,
̈
H.; Harder, S. Simple Alkaline-Earth Metal Catalysts for Effective
(
Alkene Hydrogenation. Angew. Chem., Int. Ed. 2018, 57, 15177−
Zirconium meso-octaethylporphyrinogen as a carrier for sodium
hydride in toluene: zirconium-sodium bimetallic hydride and alkyls. J.
Am. Chem. Soc. 1993, 115, 3595−3602. (b) Lukens, W. W.;
Matsunaga, P. T.; Andersen, R. A. Synthesis and Structure of
Cp* TiH, Cp* TiH Li(tmed), and [Cp* TiOLi(THF)] . Organo-
1
5182. (h) Elsen, H.; Farber, C.; Ballmann, G.; Harder, S. LiAlH :
̈
4
From Stoichiometric Reduction to Imine Hydrogenation Catalysis.
Angew. Chem., Int. Ed. 2018, 57, 7156−7160. (i) Xu, M.; Jupp, A. R.;
Qu, Z.; Stephan, D. W. Alkali Metal Species in the Reversible
2
2
2
2
2
Activation of H . Angew. Chem., Int. Ed. 2018, 57, 11050−11054.
2
metallics 1998, 17, 5240−5247. (c) Hou, Z.; Zhang, Y.; Tardif, O.;
Wakatsuki, Y. (Pentamethylcyclopentadienyl)samarium(II) Alkyl
Complex with the Neutral “C Me K” Ligand: A Precursor to the
(7) (a) Ephritikhine, M. Synthesis, Structure, and Reactions of
Hydride, Borohydride, and Aluminohydride Compounds of the f-
Elements. Chem. Rev. 1997, 97, 2193−2242. (b) Hou, Z.; Nishiura,
M.; Shima, T. Synthesis and Reactions of Polynuclear Polyhydrido
Rare Earth Metal Complexes Containing “(C Me SiMe )LnH ”
5
5
First Dihydrido Lanthanide(III) Complex and a Precatalyst for
Hydrosilylation of Olefins. J. Am. Chem. Soc. 2001, 123, 9216−9217.
5
4
3
2
(
d) Veith, M.; Konig, P.; Rammo, A.; Huch, V. Cubane-Like Li H
̈
Units: A New Frontier in Rare Earth Metal Hydride Chemistry.
Eur. J. Inorg. Chem. 2007, 2007, 2535−2545. (c) Konkol, M.; Okuda,
J. Non-metallocene hydride complexes of the rare-earth metals. Coord.
Chem. Rev. 2008, 252, 1577−1591. (d) Trifonov, A. A. Guanidinate
and amidopyridinate rare-earth complexes: Towards highly reactive
alkyl and hydrido species. Coord. Chem. Rev. 2010, 254, 1327−1347.
4 4
and Li H Li(OH): Stabilized in Molecular Adducts with Alanes.
3
3
Angew. Chem., Int. Ed. 2005, 44, 5968−5971. (e) Conroy, K. D.; Piers,
W. E.; Parvez, M. Nucleophilic Degradation of a β-Diketiminato
Ancillary by a Transient Scandium Hydride Intermediate. Organo-
metallics 2009, 28, 6228−6233. (f) Liptrot, D. J.; Hill, M. S.; Mahon,
M. F. Heterobimetallic s-Block Hydrides by σ-Bond Metathesis.
(
e) Nishiura, M.; Hou, Z. Novel polymerization catalysts and hydride
clusters from rare-earth metal dialkyls. Nat. Chem. 2010, 2, 257−268.
f) Cheng, J.; Saliu, K.; Ferguson, M. J.; McDonald, R.; Takats, J.
Variable nuclearity scorpionate-supported lanthanide polyhydrides:
(TpR,R’)LnH ]n (n = 3, 4 and 6). J. Organomet. Chem. 2010, 695,
Chem. - Eur. J. 2014, 20, 9871−9874. (g) Dube, T.; Gambarotta, S.;
́
(
Yap, G. P. A. Dinuclear Complexes of Di-, Tri-, and Mixed-Valent
Samarium Supported by the Calix-tetrapyrrole Ligand. Organo-
metallics 2000, 19, 817−823. (h) Cui, P.; Spaniol, T. P.; Okuda, J.
Heterometallic Potassium Rare-Earth-Metal Allyl and Hydrido
Complexes Stabilized by a Dianionic (NNNN)-Type Macrocyclic
Ancillary Ligand. Organometallics 2013, 32, 1176−1182.
[
2
2
696−2702. (g) Fegler, W.; Venugopal, A.; Kramer, M.; Okuda, J.
Molecular Rare-Earth-Metal Hydrides in Non-Cyclopentadienyl
Environments. Angew. Chem., Int. Ed. 2015, 54, 1724−1736.
(8) For a report of internal deprotonative metalation to form “tuck-
(12) Similar NMR reactions and observations were reported
recently. See: Rachor, S. G.; Cleaves, P. A.; Robertson, S. D.;
Mansell, S. M. NMR spectroscopic study of the adduct formation and
reactivity of homoleptic rare earth amides with alkali metal benzyl
in” and “tuck-over” metallocycle complexes, see: (a) Johnson, K. R.
D.; Hayes, P. G. Cyclometalative C-H bond activation in rare earth
and actinide metal complexes. Chem. Soc. Rev. 2013, 42, 1947−1960.
(
b) Arnold, P. L.; McMullon, M. W.; Rieb, J.; Ku
̈
hn, F. E. C-H Bond
compounds, and the crystal structures of [Li(TMEDA) ][Nd{N-
2
8
770
ACS Catal. 2019, 9, 8766−8771