Angewandte Chemie International Edition
10.1002/anie.202000860
COMMUNICATION
pursued. As shown in Scheme 3 (eq. 10), the desilylation[25] by
Buchwald, J. Am. Chem. Soc. 2000, 122, 1360; i) D. A. Culkin, J. F. Hartwig,
Acc. Chem. Res. 2003, 36, 234.
2 6
catalytic H SiF occurred smoothly to give free terminal alkyne
e1 with maintenance of enantiopurity. Treatment of c2 with
catalytic TBD led to a strained bridged polycyclic lactam f1, [26]
however, in racemic form (eq. 11). The 1,4-diketone g1 could be
readily obtained by acidic hydration (eq. 12).[27]
[5] Alkylative Sonogashira primary-alkylation: a) M. Eckhardt, G. C.Fu, J. Am. Chem.
Soc. 2003, 125, 13642; b) O.Vechorkin, D. Barmaz, V. Prous, X. Hu, J. Am.
Chem. Soc. 2009, 131, 12078; c) P. M. Pꢀrez García, P. Ren, R. Scopelliti, X. Hu,
ACS Catal. 2015, 5, 1164; d) F.-X. Luo, X. Xu, D. Wang, Z.-C. Cao, Y.-F.
Zhang, Z.-J. Shi, Org. Lett. 2016, 18, 2040; e) L. Jin, W. Hao, J. Xu, N. Sun, B.
Hu, Z. Shen, W. Mo, X. Hu, Chem. Commun. 2017, 53, 4124; Secondary-
alkylation: f) G. Altenhoff, S. Würtz, F. Glorius,Tetrahedron Lett. 2006, 47,
2
925; g) J. Yi, X. Lu, Y.-Y. Sun, B. Xiao, L. Liu, Angew. Chem. Int. Ed. 2013,
2, 12409; Angew. Chem. 2013, 125, 12635.
5
[
6] a) Chemistry of Triple-Bonded Functional Groups; Patai, S., Ed.; Wiley: New
York, 1994; b) J. Liu, J. W. Y. Lam, B. Z. Tang, Chem. Rev. 2009, 109, 5799; c)
H. K. Bisoyi, S. Kumar, Chem. Soc. Rev. 2010, 39, 264.
[
7] a) Modern Acetylene Chemistry; Stang, P. J., Diederich, F., Eds.; VCH: Weinheim,
Germany, 1995; (b) M. C. Willis, Chem. Rev. 2010, 110, 725; (c) P. Siemsen, R.
C. Livingston, F. Diederich, Angew. Chem. Int. Ed. 2000, 39, 2632; Angew.
Chem. 2000, 112, 2740.
[
8] B. M. Trost and C.-J. Li, Modern Alkynes Chemistry: Catalytic and Atom-
Economic Transformations, ed, B. M. Trost and C.-J. Li, Wiley-VCH, Weinheim,
014, p. 424.
[9] M. Eckhardt, G. C. Fu, J. Am. Chem. Soc. 2003, 125, 13642.
2
Scheme 3. Synthetic utilities of β, γ-alkynyl amide
[
10] a) W. Shi, C. Liu, Z. Yu, A. Lei, Chem. Commun. 2007, 2342; b) J. Y. Kang, B. T.
Connell, J. Org. Chem. 2011, 76, 6856; c) G. A. Molander, K. M. Traister, Org.
Lett. 2013, 15, 5052.
In conclusion, a general and highly effective, Cu-catalyzed
enantioselective alkynylation of α-bromo amide have been
achieved. This reaction can be applied to a variety of amides
and a broad range of terminal alkynes. An unusual mono-anionic
NNN pincer ligand (BOPA) accounts for the high efficiency and
stereoselectivity. Owing to the ready availability of starting
material, mild reaction conditions, the significance of resulting
functionalities, and high enantioselectivity, the application of this
novel strategy established here in synthetic and medicinal
chemistry is positively expected.
[11] a) S.-i. Usugi, H. Yorimitsu, H. Shinokubo, K. Oshima, Bull. Chem. Soc. Jpn.
2002, 75, 2687; b) K. Takami, S.-i. Usugi, H. Yorimitsu, K. Oshima, Synthesis
2005, 824; c) T. Hirashita, A. Hayashi, M. Tsuji, J. Tanaka, S. Araki,
Tetrahedron 2008, 64, 2642.
[12] a) A. Suárez, G. C. Fu, Angew. Chem. Int. Ed. 2004, 43, 3580; Angew. Chem.
2004, 116, 3664; b) G. Liu, G. Xu, J. Li, D. Ding, J. Sun, Org. Biomol. Chem.
2014, 12, 1387; c) M. L. Hossain, F. Ye, Y. Zhang, J. Wang, Tetrahedron 2014,
70, 6957; d) M. L. Hossain, F. Ye, Y. Zhang, J. Wang, J. Org. Chem. 2013, 78,
1
236; e) L. Zhou, J. Ma, Y. Zhang, J. Wang, Tetrahedron Lett. 2011, 52, 5484.
[
13] Y. Yamane, N. Miwa, T. Nishikata, ACS Catal. 2017, 7, 6872.
14] a) W. Liu, L. Li, C.-J. Li, Nat. Commun. 2015, 6, 6526; b) W. Liu, Z. Chen, L. Li,
H. Wang, C.-J. Li, Chem. Eur. J. 2016, 22, 5888.
[
-
Acknowledgements
[15] X.-Y. Dong, Y.-F. Zhang, C.-L. Ma, Q.-S. Gu, F.-L. Wang, Z.-L. Li, S.-P. Jiang,
We are grateful to NSFC-21772218, 21421091, XDB20000000,
the “Thousand Plan” Youth program, State Key Laboratory of
Organometallic Chemistry, Shanghai Institute of Organic
Chemistry, and the Chinese Academy of Sciences.
X.-Y. Liu, Nat. Chem. 2019, 11, 1158.
[16] G. Lei, H. Zhang, B. Chen, M. Xu, G. Zhang, Chem. Sci. 2020, 11, 1023.
[17] a) H. A. McManus, P. J. Guiry, J. Org. Chem. 2002, 67, 8566; b) H. A. McManus,
P. G. Cozzi, P. J. Guiry, Adv. Synth. Catal. 2006, 348, 551; c) G. C. Hargaden, H.
A. McManus, P. G. Cozzi, P. J. Guiry, Org. Biomol. Chem. 2007, 5, 763.
[
18] Y. Lv, W. Pu, X. Zhu, T. Zhao, F. Lin, Adv. Synth. Catal. 2018, 360, 1397–1401
19] (a) K. Jouvin, J. Heimburger, G. Evano, Chem. Sci. 2012, 3, 756. (b) F. Monnier,
F. Turtaut, L. Duroure, M. Taillefer, Org. Lett. 2008, 10, 3203.
20] J. Lusztyuk, B. Maillard, S. Deycard, D. A. Lindsay, K. U. Ingold, J. Org. Chem.
1987, 52, 3509.
Keywords: Copper-catalysed • Sonogashira reaction
[
•Enantioselective • α-Bromoamide • Terminal alkyne
[
[
1] Alan H. Cherney, Nathaniel T. Kadunce, and Sarah E. Reisman Chem. Rev. 2015,
15, 9587−9652 and references therein.
1
[21] Q.-H. Deng, H. Wadepohl, L. H. Gade, J. Am. Chem. Soc. 2012, 134, 2946.
[22] a) V. W.-W.Yam, K. Kam-Wing Lo,K.Man-Chung Wong, J. Organomet. Chem.
1999, 578, 3. b) A. Sagadevan, A. Ragupathi, and K. C. Hwang, Angew. Chem.
Int. Ed. 2015, 54, 13896; Angew. Chem. 2015, 127, 14102. c) A. A. Isse, C. Y.
Lin, M. L. Coote, A. Gennaro, J. Phys. Chem. B 2011, 115, 678.
[23] a) X. Chen, X. Liu, J. T. Mohr, J. Am. Chem. Soc. 2016, 138, 6364; b)T. Xu, X.
Hu, Angew. Chem., Int. Ed. 2015, 54, 1307. 1323. Angew. Chem. 2015, 127,
1323.
[
2] a) B. M. Stoltz, N. B. Bennett, D. C. Duquette, A. F. G. Goldberg, Y. Liu, M. B.
Loewinger, C. M. Reeves, in Comprehensive Organic Synthesis II, 2nd ed. (Ed.:
P. Knochel), Elsevier, Amsterdam, 2014, pp.1; b) R. Fern.ndez de La Pradilla, A.
Viso, in Comprehensive Organic Synthesis II, 2nd ed. (Ed.: P. Knochel), Elsevier,
Amsterdam, 2014, pp. 157.
[
3] a) C. Fischer, G. C. Fu, J. Am. Chem. Soc. 2005, 127, 4594; b) D. A. Evans, M. D.
Ennis, D. J. Mathre, J. Am. Chem. Soc. 1982, 104, 1737; c) A. G. Myers, B. H.
Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc.
[24] a) H. Yin, R. J. Carroll, J. M. Anna, E. J. Schelter, J. Am. Chem. Soc. 2015, 137,
9234−9237; b) J. D. Nguyen, E. M. D'Amato, J. M. R. Narayanam, C. R. J.
Stephenson, Nat. Chem. 2012, 4, 854
1
997, 119, 6496.
[4] a) P. M. Lundin, J. Esquivias, G. C. Fu, Angew. Chem. Int. Ed. 2009, 48, 154;
Angew. Chem. 2009, 121, 160; b) S. Lou, G. C. Fu, J. Am. Chem. Soc. 2010, 132,
[25] D. Lasꢁnyi, G. L. Tolnai, Org. Lett. 2019, 21, 10057.
1
264; c) S. Lou, G. C. Fu, J. Am. Chem. Soc. 2010, 132, 5010; d) P. M. Lundin,
[26] J. K. Lam, H. V. Pham, K. N. Houk, C. D. Vanderwal, J. Am. Chem. Soc. 2013,
135, 17585.
G. C. Fu, J. Am. Chem. Soc. 2010, 132, 11027; e) J. Choi, P. Martín-Gago, G. C.
Fu, J. Am. Chem. Soc. 2014, 136, 12161; f) C. Liu, S. Tang, D. Liu, J. Yuan, L.
Zheng, L. Meng, A. Lei, Angew. Chem. Int. Ed. 2012, 51, 3638; Angew. Chem.
[27] M. Wang, H. Zhang, J. Liu, X. Wu, C. Zhu, Angew.Chem.Int. Ed. 2019, 58,
17646. Angew.Chem. 2019, 131, 17810.
2
012, 124, 3698; g) T. Nishikata, Y. Noda, R. Fujimoto, T. Sakashita, J. Am.
Chem. Soc. 2013, 135, 16372; h) J. M. Fox, X. Huang, A. Chieffi, S. L.
This article is protected by copyright. All rights reserved.