10.1002/anie.202000395
Angewandte Chemie International Edition
RESEARCH ARTICLE
[15] G. T. Kerr, J. Phys. Chem. 1967, 71, 4155–4156.
aluminum-zoning, are difficult to implement. Of fundamental
significance is that aluminosilicate MFI nanosheets catalysts can
exhibit external surface structure sensitivity, e.g., with (010) facets
being more reactive than coarser MFI surfaces, for certain
reactions. Electron microscopy proves to be the necessary
characterization method to link these pronounced catalytic
performance changes to nanoscale coarsening. Data from other
characterization techniques, including porosimetry, XRD and
NMR remain invariant, while probe reactions like Hofmann
elimination of tert-butylamine and ethanol dehydration in the
absence and presence of DTBP do not exhibit external surface
structure sensitivity.
[16] C. J. Heard, L. Grajciar, C. M. Rice, S. M. Pugh, P. Nachtigall, S. E.
Ashbrook, R. E. Morris, Nat. Commun. 2019, 10, 4690.
[17] S. Malola, S. Svelle, F. L. Bleken, O. Swang, Angew. Chemie Int. Ed.
2012, 51, 652–655.
[18] M. C. Silaghi, C. Chizallet, E. Petracovschi, T. Kerber, J. Sauer, P.
Raybaud, ACS Catal. 2015, 5, 11–15.
[19] R. Gounder, A. J. Jones, R. T. Carr, E. Iglesia, J. Catal. 2012, 286, 214–
223.
[20] L. R. Aramburo, J. Ruiz-Martínez, J. P. Hofmann, B. M. Weckhuysen,
Catal. Sci. Technol. 2013, 3, 1208–1214.
[21] L. R. Aramburo, E. de Smit, B. Arstad, M. M. van Schooneveld, L.
Sommer, A. Juhin, T. Yokosawa, H. W. Zandbergen, U. Olsbye, F. M. F.
de Groot, et al., Angew. Chemie Int. Ed. 2012, 51, 3616–3619.
[22] D. E. Perea, I. Arslan, J. Liu, Z. Ristanović, L. Kovarik, B. W. Arey, J. A.
Lercher, S. R. Bare, B. M. Weckhuysen, Nat. Commun. 2015, 6, 7589.
[23] C. A. Fyfe, J. L. Bretherton, L. Y. Lam, J. Am. Chem. Soc. 2001, 123,
5285–5291.
Acknowledgements
[24] M. Choi, K. Na, J. Kim, Y. Sakamoto, O. Terasaki, R. Ryoo, Nature 2009,
461, 246–249.
This work was supported by the Catalysis Center for Energy
Innovation, an Energy Frontier Research Center funded by the
U.S. Department of Energy, Office of Science, Basic Energy
Sciences under Award DE-SC0001004; and, in its earlier stages,
by ADMIRE (Abu Dhabi–Minnesota Institute for Research
Excellence) through the Petroleum Institute (now Khalifa
University of Science and Technology). Parts of this work were
carried out in the Characterization Facility, University of
Minnesota, which receives partial support from NSF through the
MRSEC program. Y.G. acknowledges support from ADNOC (Abu
Dhabi National Oil Company). We thank Dr. S. Hwang (Caltech)
for performing the solid-state NMR experiments.
[25] K. Kim, R. Ryoo, H. D. Jang, M. Choi, J. Catal. 2012, 288, 115–123.
[26] W. J. Roth, P. Nachtigall, R. E. Morris, J. Čejka, Chem. Rev. 2014, 114,
4807–4837.
[27] M. E. Davis, Nature 2002, 417, 813–821.
[28] M. A. Snyder, M. Tsapatsis, Angew. Chem. Int. Ed 2007, 46, 7560–7573.
[29] C. M. Lew, R. Cai, Y. Yan, Acc. Chem. Res. 2009, 43, 210–219.
[30] M. V. Opanasenko, W. J. Roth, J. Čejka, Catal. Sci. Technol. 2016, 6,
2467–2484.
[31] M. Hartmann, A. G. Machoke, W. Schwieger, Chem. Soc. Rev. 2016, 45,
3313–3330.
[32] M. S. Holm, E. Taarning, K. Egeblad, C. H. Christensen, Catal. Today
2011, 168, 3–16.
[33] J. Pérez-Ramírez, C. H. Christensen, K. Egeblad, C. H. Christensen, J.
C. Groen, Chem. Soc. Rev. 2008, 37, 2530–2542.
Keywords: catalysis • electron tomography • stability • two
dimensional materials • zeolites
[34] L. H. Chen, X. Y. Li, J. C. Rooke, Y. H. Zhang, X. Y. Yang, Y. Tang, F.
S. Xiao, B. L. Su, J. Mater. Chem. 2012, 22, 17381–17403.
[35] X. Zhang, D. Liu, D. Xu, S. Asahina, K. A. Cychosz, K. V. Agrawal, Y. Al
Wahedi, A. Bhan, S. Al Hashimi, O. Terasaki, M. Thommes, M. Tsapatsis,
Science 2012, 336, 1684–1687.
[1]
[2]
[3]
B. Elyassi, X. Zhang, M. Tsapatsis, Microporous Mesoporous Mater.
2014, 193, 134–144.
S. van Donk, A. H. Janssen, J. H. Bitter, K. P. de Jong, Catal. Rev. 2003,
45, 297–319.
[36] D. Xu, G. R. Swindlehurst, H. Wu, D. H. Olson, X. Zhang, M. Tsapatsis,
Adv. Funct. Mater. 2014, 24, 201–208.
T. Ennaert, J. Geboers, E. Gobechiya, C. M. Courtin, M. Kurttepeli, K.
Houthoofd, C. E. A. Kirschhock, P. C. M. M. Magusin, S. Bals, P. A.
Jacobs, et al., ACS Catal. 2015, 5, 754–768.
[37] D. Xu, O. Abdelrahman, S. Hyun Ahn, Y. Guefrachi, A. Kuznetsov, L.
Ren, S. Hwang, M. Khaleel, S. Al Hassan, D. Liu, et al., AIChE J 2019,
65, 1067–1075.
[4]
[5]
[6]
A. Vjunov, J. L. Fulton, D. M. Camaioni, J. Z. Hu, S. D. Burton, I. Arslan,
J. A. Lercher, Chem. Mater. 2015, 27, 3533–3545.
K. Chen, J. Kelsey, J. L. White, L. Zhang, D. Resasco, ACS Catal. 2015,
5, 7480–7487.
[38] L. Ren, Q. Guo, P. Kumar, M. Orazov, D. Xu, S. M. Alhassan, K. A.
Mkhoyan, M. E. Davis, M. Tsapatsis, Angew. Chemie Int. Ed. 2015, 54,
10848–10851.
[39] P. A. Midgley, R. E. Dunin-Borkowski, Nat. Mater. 2009, 8, 271–280.
[40] H. Friedrich, P. E. de Jongh, A. J. Verkleij, K. P. de Jong, Chem. Rev.
2009, 109, 1613–1629.
L. R. Aramburo, L. Karwacki, P. Cubillas, S. Asahina, D. A. M. de Winter,
M. R. Drury, I. L. C. Buurmans, E. Stavitski, D. Mores, M. Daturi, et al.,
Chem. A Eur. J. 2011, 17, 13773–13781.
[41] Y. Wei, T. E. Parmentier, K. P. de Jong, J. Zečević, Chem. Soc. Rev.
2015, 44, 7234–61.
[7]
[8]
M. C. Silaghi, C. Chizallet, P. Raybaud, Microporous Mesoporous Mater.
2014, 191, 82–96.
[42] J. R. Kremer, D. N. Mastronarde, J. R. McIntosh, J. Struct. Biol. 1996,
116, 71–76.
L. Karwacki, D. A. M. de Winter, L. R. Aramburo, M. N. Lebbink, J. A.
Post, M. R. Drury, B. M. Weckhuysen, Angew. Chemie Int. Ed. 2011, 50,
1294–1298.
[43] A. Zecchina, S. Bordiga, G. Spoto, L. Marchese, G. Petrini, G. Leofanti,
M. Padovan, J. Phys. Chem. 1992, 96, 4991–4997.
[9]
D. Mehlhorn, R. Valiullin, J. Kärger, K. Cho, R. Ryoo, Microporous
Mesoporous Mater. 2012, 164, 273–279.
[44] V. Nikolakis, M. Tsapatsis, D. G. Vlachos, Langmuir 2003, 19, 4619–
4626.
[45] P. M. Piccione, C. Laberty, S. Yang, M. A. Camblor, A. Navrotsky, M. E.
Davis, J. Phys. Chem. B 2000, 104, 10001–10011.
[10] L. R. Aramburo, Y. Liu, T. Tyliszczak, F. M. F. de Groot, J. C. Andrews,
B. M. Weckhuysen, ChemPhysChem 2013, 14, 496–499.
[11] S. M. T. Almutairi, B. Mezari, E. A. Pidko, P. C. M. M. Magusin, E. J. M.
Hensen, J. Catal. 2013, 307, 194–203.
[46] J. D. Rimer, O. Trofymluk, A. Navrotsky, R. F. Lobo, D. G. Vlachos,
Chem. Mater. 2007, 19, 4189–4197.
[12]
M. Milina, S. Mitchell, N. L. Michels, J. Kenvin, J. Pérez-Ramírez, J.
Catal. 2013, 308, 398–407.
[47] O. A. Abdelrahman, K. P. Vinter, L. Ren, D. Xu, R. J. Gorte, M. Tsapatsis,
P. J. Dauenhauer, Catal. Sci. Technol. 2017, 7, 3831–3841.
[48] D. Liu, A. Bhan, M. Tsapatsis, S. Al Hashimi, ACS Catal. 2011, 1, 7–17.
[13] L. Zhang, K. Chen, B. Chen, J. L. White, D. E. Resasco, J. Am. Chem.
Soc. 2015, 137, 11810–11819.
[49] A. Corma, V. Fornés, L. Forni, F. Márquez, J. Martınez-Triguero, D.
́
[14] R. M. Ravenelle, F. Schüβler, A. D’Amico, N. Danilina, J. A. van
Bokhoven, J. A. Lercher, C. W. Jones, C. Sievers, J. Phys. Chem. C
2010, 114, 19582–19595.
Moscotti, J. Catal. 1998, 179, 451–458.
[50] K. Gꢀragꢀra-Marek, K. Tarach, M. Choi, J. Phys. Chem. C 2014, 118,
12266–12274.
6
This article is protected by copyright. All rights reserved.