Communication
ChemComm
S. Valiyaveettil and T. Enoki, J. Phys. Chem. C, 2010, 114, 11699;
(d) Y. Ito, A. Miyazaki, K. Fukui, S. Valiyaveettil, T. Yokoyama and
T. Enoki, J. Phys. Soc. Jpn., 2008, 77, 103701.
2 For studies on the catalytic properties of unimetallic nanoparticles
from the author’s group, see: (a) Y. M. A. Yamada, T. Arakawa,
H. Hocke and Y. Uozumi, Chem. – Asian J., 2009, 4, 1092; (b) Y. Uozumi
and Y. M. A. Yamada, Chem. Rec., 2009, 9, 51; (c) Y. M. A. Yamada and
Y. Uozumi, Tetrahedron, 2007, 63, 8492; (d) Y. Uozumi, R. Nakao and
H. Rhee, J. Organomet. Chem., 2007, 692, 420; (e) Y. M. A. Yamada,
T. Arakawa, H. Hocke and Y. Uozumi, Angew. Chem., Int. Ed., 2007,
46, 704; ( f ) R. Nakao, H. Rhee and Y. Uozumi, Org. Lett., 2005, 7, 163;
(g) Y. Uozumi and R. Nakao, Angew. Chem., Int. Ed., 2003, 42, 194.
3 For reviews, see: (a) M. Kitamura and R. Noyori, ‘‘Hydrogenation and
Transfer Hydrogenation’’, in Ruthenium in Organic Synthesis, ed. S.-I.
Murahashi, Weinheim, Wiley-VCH, 2004, pp. 3–52; (b) F. Alonso,
P. Riente and M. Yus, Acc. Chem. Res., 2011, 44, 379; (c) J. M. Brunel,
Tetrahedron, 2007, 63, 3899.
4 The method for the preparation of the quatermetallic nanoparticles
[Ni/Ru/Pt/Au]nano is given in the ESI†.
5 It has been reported that the transfer hydrogenation of non-activated
alkenes often required 10–30 mol% of RANEYs Ni or homogeneous
phosphine–Ru complexes under thermal conditions. See ref. 3 and 6,
and references cited therein.
6 (a) G. P. Boldrini, D. Savoia, E. Tagliavini, C. Trombini and A. Umani-
Ronchi, J. Org. Chem., 1985, 50, 3082; (b) J. Yu and J. B. Spencer,
Chem. – Eur. J., 1999, 5, 2237.
Scheme 7 Transfer hydrogenation of olefins with [Ni/Ru/Pt/Au]nano
.
7 For bimetallic nanocatalysts whose catalytic performance was
improved by the bimetallic combination, see: (a) D. I. Enache, J. K.
Edwards, P. Landon, B. Solsona-Espriu, A. F. Carley, A. A. Herzing,
M. Watanabe, C. J. Kiely, D. W. Knight and G. J. Hutchings, Science,
2006, 311, 362; (b) N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su
and L. Prati, J. Catal., 2006, 244, 113; (c) M. Schrinner, S. Proch,
Y. Mei, R. Kempe, N. Miyajima and M. Ballauff, Adv. Mater., 2008,
20, 1928; (d) M. Suzuki, M. Abe, T. Ueno, S. Abe, T. Goto, Y. Toda,
T. Akita, Y. Yamada and Y. Watanabe, Chem. Commun., 2009, 4871;
(e) B. D. Chandler, C. G. Long, J. D. Gilbertson, C. J. Pursell,
G. Vijayaraghavan and K. Stevenson, J. Phys. Chem. C, 2010, 114, 11498;
( f ) W.-J. Yoo, H. Miyamura and S. Kobayashi, J. Am. Chem. Soc., 2011,
133, 3095.
In conclusion, we have developed a novel protocol for the hetero-
geneous catalytic transfer hydrogenation of alkenes which was
promoted by the quatermetallic alloy nanoparticles [Ni/Ru/Pt/Au]nano
via sequential cooperation of the component metal elements. Along
this line, various types of catalysts are being developed by combining
the unique chemical properties of transition metals in our laboratory
and will be reported in due course.
We acknowledge the JSPS (Grant-in-Aid for Scientific Research
on Innovative Area #2105) for partial financial support of this
work. Y. I. was supported by the JSPS Fellowship program.
8 For an example, see: H. Bricout, A. Mortreux and E. Monflier,
J. Organomet. Chem., 1998, 553, 469.
9 Catalytic ability of the heteroquatermetallic [Ni/Ru/Pt/Au]nano was
also examined for the aerobic oxidation of 2-octanol (cf. Scheme 3),
olefin migration of 4-phenylbut-1-ene (cf. Scheme 4) and hydrogenation
of b-methylstyrene (cf. Scheme 5), where 2-octanol, olefin-isomerized
products 3 (4-phenylbut-2-ene and 1-phenylbut-1-ene (b-ethylstyrene)),
and phenylpropane (5) were obtained in 63%, 13%, and 99% yields,
respectively.
Notes and references
1 For studies on the physical properties of multiple-metallic nano-
particles from the author’s group, see: (a) Y. Ito, K. Takai and
T. Enoki, J. Phys. Chem. C, 2011, 115, 8971; (b) A. Miyazaki, Y. Ito
and T. Enoki, Eur. J. Inorg. Chem., 2010, 4279; (c) Y. Ito, A. Miyazaki,
12126 | Chem. Commun., 2014, 50, 12123--12126
This journal is ©The Royal Society of Chemistry 2014