Organic Letters
Letter
Scheme 5. Chemical Transformations of 2 and 3 To Prove
Their Stereochemistry
REFERENCES
■
(1) For examples, see: (a) Carreira, E. M.; Kvaerno, L. In Classics in
Stereoselective Synthesis; Wiley-VCH: Weinheim, Germany, 2009.
(b) Design and Strategy in Organic Synthesis; Hanessian, S., Giroux, S.,
Merner, B. L., Eds.; Wiley-VCH: Weinheim, Germany, 2013.
(2) For general discussions, see: (a) Modern Methods in Stereoselective
Aldol Reactions; Mahrwald, R., Ed.; Wiley-VCH: Weinheim, Germany,
2013. (b) Trost, B. M.; Brindle, C. S. Chem. Soc. Rev. 2010, 39, 1600−
1632. (c) Shibasaki, M.; Matsunaga, S. Chem. Soc. Rev. 2006, 35, 269−
279.
(3) (a) Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry 2014, 25,
1061−1090. (b) Heravi, M. M.; Zadsirjan, V. Tetrahedron: Asymmetry
2013, 24, 1149−1188. (c) Machajewski, T. D.; Wong, C.-H. Angew.
Chem., Int. Ed. 2000, 39, 1352−1374.
(4) (a) Kitanosonoa, T.; Kobayashi, S. Adv. Synth. Catal. 2013, 355,
3095−3118. (b) Denmark, S. E.; Heemstra, J. R., Jr.; Beutner, G. L.
Angew. Chem., Int. Ed. 2005, 44, 4682−4698.
(5) (a) Denmark, S. E.; Wilson, T. W. Angew. Chem., Int. Ed. 2012, 51,
9980−9992. (b) Beutner, G. L.; Denmark, S. E. Angew. Chem., Int. Ed.
2013, 52, 9086−9096.
(6) (a) Brogan, A. P.; Dickerson, T. J.; Janda, K. D. Angew. Chem., Int.
Ed. 2006, 45, 8100−8102. (b) Bisai, V.; Bisai, A.; Singh, V. K.
Tetrahedron 2012, 68, 4541−4580.
(7) (a) Yu, C.-M.; Youn, J.; Jung, J. Angew. Chem., Int. Ed. 2006, 45,
1553−1556. (b) Kim, S.-H.; Oh, S.-J.; Ho, P.-S.; Kang, S.-C.; Kyung-Jin,
O.; Yu, C.-M. Org. Lett. 2008, 10, 265−268. (c) Kim, J.; Kim, H.; Kim,
N.; Yu, C.-M. J. Org. Chem. 2014, 79, 1040−1046.
(8) Related carbonyl or imine addition reactions using allenoates:
(a) Xu, B.; Hammond, G. B. Angew. Chem., Int. Ed. 2008, 47, 689−692.
(b) Bhowmick, M.; Lepore, S. D. Org. Lett. 2010, 12, 5078−5080.
(c) Oisaki, K.; Zhao, D.; Kanai, M.; Shibasaki, M. J. Am. Chem. Soc. 2007,
129, 7439−7443. (d) Cowen, B. J.; Saunders, L. B.; Miller, S. J. J. Am.
Chem. Soc. 2009, 131, 6105−6107. (e) Hashimoto, T.; Sakata, K.;
Tamakuni, F.; Dutton, M. J.; Maruoka, K. Nat. Chem. 2013, 5, 240−244.
(f) Mbofana, C.; Miller, S. J. Am. Chem. Soc. 2014, 136, 3285−3292.
(9) (a) Cowen, B. J.; Miller, S. J. Chem. Soc. Rev. 2009, 38, 3102−3116.
(b) Ma, S. Acc. Chem. Res. 2009, 42, 1679−1688.
(10) (a) Wang, Z.; Xub, X.; Kwon, O. Chem. Soc. Rev. 2014, 43, 2927−
2940. (b) Pei, C.-K.; Shi, M. Chem.Eur. J. 2012, 18, 6712−6716.
(11) Racemic 2 was prepared by propargylic indium with carbonyls:
Park, C.; Lee, P. H. Org. Lett. 2008, 10, 3359−3362. The related
enantioselective Mannich reaction with allenoate has been reported; see
refs 8d−f.
(12) Na, R.; Jing, C.; Xu, Q.; Jiang, H.; Wu, X.; Shi, J.; Zhong, J.; Wang,
M.; Benitez, D.; Tkatchouk, E.; Goddard, W. A.; Guo, H.; Kwon, O. J.
Am. Chem. Soc. 2011, 133, 13337−13348.
rotation with literature values,18 optical purity of 7 was
diminished to 71% ee starting from 91% ee (4d), presumably
due to a partial epimerization under harsh reaction conditions.
Diols 8a−f were cleanly prepared by LiAlH4 reduction of 3a−f in
good yields. The stereochemical assignment for threo-3 was
based on the magnitude of the vicinal coupling constant of six-
membered ring protons in the 1,3-dioxane 9 obtained from 8f.
Conversion of 8a to 10 was achieved by catalytic hydrogenation
on Pd/C in MeOH in 83% yield. Finally, relative and absolute
configurations of 10 were proven by comparison of NMR and
specific rotation to the literature.19
In summary, this paper describes highly selective synthetic
routes to allenoate 2 and threo-3-butynoate 3 from an aldol
reaction of allenoate 1 with aldehydes in a general and efficient
way that promises to be synthetically useful. We observed that
Lewis acid additive BF3·OEt2 plays a crucial role in the formation
of 3 to prevent an isomerization by scavenging excess amine base.
Studies are in progress for the extension of methods to other
aldol routes, especially the γ-addition process, and their
applications to natural product synthesis.
(13) (a) Joshi, N. N.; Brown, H. C. J. Am. Chem. Soc. 1988, 110, 6246−
6248. (b) Roy, C. D.; Brown, H. C. Aust. J. Chem. 2007, 60, 835−842.
(14) (a) Corey, E. J.; Yu, C.-M.; Lee, D.-H. J. Am. Chem. Soc. 1990, 112,
878−879. (b) Corey, E. J.; Yu, C.-M.; Kim, S. S. J. Am. Chem. Soc. 1989,
111, 5495−5496. (c) Choi, J.; Lee, B.; Yu, C.-M. Chem. Commun. 2011,
47, 3811−3813.
ASSOCIATED CONTENT
* Supporting Information
■
S
(15) Ooi, T.; Maruoka, K. In Modern Carbonyl Chemistry; Otera, J., Ed.;
Wiley-VCH: Weinheim, Germany, 2000; pp 1−32.
Detailed experimental procedures and full spectroscopic data for
all new compounds. This material is available free of charge via
(16) (a) Yoneda, E.; Kaneko, T.; Zhang, S.-W.; Onitsuka, K.;
Takahashi, S. Org. Lett. 2000, 2, 441. (b) Kang, S.; Kim, K.; Yu, C.-
M.; Hwang, J.; Do, Y. Org. Lett. 2001, 3, 2851−2853.
AUTHOR INFORMATION
Corresponding Author
(17) (a) Stewart, M.; Capon, R. J.; Lacey, E.; Tennant, S.; Gill, J. H. J.
Nat. Prod. 2005, 68, 581−584. (b) Desk, J.; Backvall, J.-E. Org. Biomol.
Chem. 2009, 7, 3379−3381.
■
Notes
(18) Drioli, S.; Felluga, F.; Forzato, C.; Nitti, P.; Pitacco, G.; Valentin,
E. J. Org. Chem. 1998, 63, 2385−2388.
(19) Kano, T.; Sugimoto, H.; Maruoka, K. J. Am. Chem. Soc. 2011, 133,
18130−18133.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
The authors are grateful to the National Research Foundation,
Korea (2012R1A1A2006930), for generous financial support of
this research.
1576
Org. Lett. 2015, 17, 1573−1576