3
mol), L
C, 20 h. Isolated yield.
1
b(2.4 mol%), NaOH (1.2 mmol), xylene (3 mL), 150
to promote Ir-catalyzed C-N bond formation reactions of an
o
aromatic amine and alcohols with good to excellent yields.
This provides an alternative methodology to synthesis of
substituted amine derivatives.
Encouraged by the promising results, we further employed
the above methods to other phenyl amines and various
alcohols. The obtained results were summarized in Table 3.
The results showed different N-alkylated anilines were
obtained with good to excellent yields by using this catalyst.
The effect of substituents on the aromatic ring of amine has
also been explored. It was observed that anilines with
electron-donating or electron-withdrawing substituents could
react under the optimal reaction conditions with the overall
yield in 69% to 90%. Subsequently, the reactions of different
alcohols were explored. Clearly, aromatic alcohols, including
p-methylbenzyl alcohol, p-methoxylbenzyl alcohol, p-
chlorobenzyl alcohol and furfuryl alcohol could react
smoothly and give yields ranging from 72% to 93%.
Supporting Information
Supplementary data related to this paper is available free of
charge via the Internet.
Acknowledgements
We gratefully acknowledge financial support of this work
by the National Natural Science Foundation of China
(
21401080), the Natural Science Foundation of Jiangsu
Province of China (BK20130125), Jiangsu Talents Project
2013-JNHB-027), China Postdoctoral Science Foundation
(2014M550262, 2015T80495) and MOE & SAFEA for the
11 Project (B13025).
(
a, b
Table 3. Alkylation of amines with alcohols
1
References and Notes
b
1. (a) Watson, A. J. A.; Williams, J. M. J. Science 2010, 329, 635.
Entry
R
1
R
2
Yield[%]
(
b) Gunanathan, C.; Milstein, D. Science 2013, 341, 1229712.
2
.
Recent reviews: (a) Huang, F.; Liu, Z.; Yu, Z. Angew. Chem.
Int. Ed. 2016, 55, 862. (b) Yang, Q.; Wang, Q.; Yu, Z. Chem.
Soc. Rev. 2015, 44, 2305. (c) Nandakumar, A.; Midya, S. P.;
Landge, V. G.; Balaraman, E. Angew. Chem. Int. Ed. 2015, 54,
1
2
3
4
5
6
H
H
nPr
4-Me-Ph
Ph
74 (5a)
87 (5b)
11022. (d) Chen, B.; Wang, L.; Gao, S. ACS Catal. 2015, 5,
c
H
90 (5c), 85
76 (5d)
5851. (e) Shimizu, K.-I. Catal. Sci. Technol. 2015, 5, 1412. (f)
Obora, Y. ACS Catal. 2014, 4, 3972. (g) Hollmann, D.
ChemSusChem 2014, 7, 2411.
H
4-Cl-Ph
Ph
3
4
5
.
.
.
Murahashi, S.; Hirano, T.; Yano, T. J. Am. Chem. Soc. 1978,
4-Cl
H
73 (5e)
100, 348.
Hollmann, D.; Bähn,S.; Tillack, A.; Beller, M. Angew. Chem.
Int. Ed. 2007, 46, 8291.
4-OMe-Ph
87 (5f)
Saidi, O.; Blacker, A. J.; Farah, M. M.; Marsden, S. P.;
Williams, J. M. Angew. Chem. Int. Ed. 2009, 48, 7375.
Largeron, M.; Fleury, M.-B. Org. Lett. 2009, 11, 883.
Shimizu, K.-I.; Shimura, K.; Ohshima, K.; Tamura, M.;
Satsuma, A. Green Chem., 2011, 13, 3096.
Shimizu, K.-I.; Ohshima, K.; Tai, Y.; Tamura, M.; Satsuma, A.
Catal. Sci. Technol., 2012, 2, 730.
Tan, X.; Li, B.; Xu, S.; Song, H.; Wang, B. Organometallics
7
4-OMe
Ph
82 (5g)
6
7
.
.
8
9
4-F
3-Cl
Ph
4-Cl-Ph
4-OMe-Ph
Ph
76 (5h)
74 (5i)
86 (5j)
69 (5k)
85 (5l)
78 (5m)
84 (5n)
8
9
1
1
.
.
1
1
1
1
1
0
1
2
3
4
4-Cl
2013, 32, 3253.
0. Taddei, M.; Mura, M. G.; Rajamäki, S.; Luca, L. D.; Porcheddu,
A. Adv. Synth. Catal. 2013, 355, 3002.
2-Cl
1. (a) Hamid, M. H. S. A.; Slatford, P. A.; Williams, J. M. J. Adv.
Synth. Catal. 2007, 349, 1555. (b) Guillena, G.; Ramon, D. J.;
Yus, M. Angew. Chem. Int. Ed. 2007, 46, 2358. (c) Nixon, T.
D.; Whittlesey, M. K.; Williams, J. M. Dalton Trans. 2009, 753
(d) Mata, J. A.; Hahn, F. E.; Peris, E. Chem. Sci. 2014, 5, 1723.
2. (a) Song, C.; Qu, S.; Tao, Y.; Dang, Y.; Wang, Z.-X. ACS
Catal. 2014, 4, 2854. (b) Li, H.; Wang, X.; Huang, F.; Lu, G.;
Jiang, J.; Wang, Z.-X. Organometallics 2011, 30, 5233. (c) Cui,
X.; Dai, X.; Deng, Y.; Shi, F. Chem. Eur. J. 2013, 19, 3665. (d)
Cui, X.; Zhang, C.; Shi, F.; Deng, Y. Chem. Commun. 2012, 48,
(2-)Py
Ph
Ph
(2-)furyl
Ph
(1-)Naph
1
a
Reagents and conditions: 1 (1.0 mmol), 2 (1.1 mmol), IrCl
3
(2
o
mol%), L
1
(2.4 mol%). NaOH (1.2 mmol), toluene (3 mL), 120 C,
b
c
2
2 n
0 h. Isolated yield. [RuCp*Cl ] /ATA (2 mol%), ref 19.
9391. (e) Cui, X.; Zhang, Y.; Shi, F.; Deng, Y. Chem. Eur. J.
2011, 17, 1021 (f) Liu, X.; Ding, R.-S.; He, L.; Liu, Y.-M.; Cao,
Y.; He, H.-Y.; Fan, K.-N. ChemSusChem 2013, 6, 604. (g)
Tang, C.-H.; He, L.; Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N.
Chem. Eur. J. 2011, 17, 7172. (h) He, L.; Lou, X.-B.; Ni, J.;
Liu, Y.-M.; Cao, Y.; He, H.-Y.; Fan, K.-N. Chem. Eur. J. 2010,
16, 13965.
Conclusions
In summary, an efficient method for secondary amines
synthesis has been developed through alanine triazole iridium-
catalyzed cross-coupling of an aromatic amine and an alkyl
amine by using the borrowing hydrogen strategy. In addition,
it was observed that alanine triazole is also an effective ligand
13. (a) Xiong, B.; Li, Y.; Lv, W.; Tan, Z.; Jiang, H.; Zhang, M.;
Org. Lett. 2015, 17, 4054. (b) Xie, F.; Zhang, M.; Chen, M.; Lv,
W.; Jiang, H. ChemCatChem 2015, 7, 349. (c) Xie, F.; Zhang,