Journal of the American Chemical Society
Page 8 of 10
embedding a metal−organic cage into a ZIF-8-derived matrix to
(41) Liu, G.; Cui, H.; Wang, S.; Zhang, L.; Su, C.-Y. A series of highly
promote proton and electron transfer. J. Am. Chem. Soc. 2019, 141,
13057−13065.
(23) Trickett, C. A.; Helal, A.; Al-Maythalony, B. A.; Yamani, Z. H.
Cordova, K. E.; Yaghi, O. M. The chemistry of metal–organic
frameworks for CO2 capture, regeneration and conversion. Nat. Rev.
Mater. 2017, 2, 17045.
(24) Li, G.; Zhao, S.; Zhang, Y.; Tang, Z. Metal–Organic Frameworks
Encapsulating Active Nanoparticles as Emerging Composites for
Catalysis: Recent Progress and Perspectives. Adv. Mater. 2018,
1800702.
(25) Liu, X.; Sun, L.; Deng, W.-Q. Theoretical investigation of CO2
adsorption and dissociation on low index surfaces of transition metals.
J. Phys. Chem. C 2018, 122, 8306–8314.
(26) Hou, S.-J.; Dong, J.; Zhao, B. Formation of C-X Bonds in CO2
chemical fixation catalyzed by metal–organic frameworks. Adv. Mater.
2019, 1806163.
(27) Liang, J.; Huang, Y.-B.; Cao, R. Metal–organic frameworks and
porous organic polymers for sustainable fixation of carbon dioxide into
cyclic carbonates. Coord. Chem. Rev. 2019, 378, 32–65.
(28) Zhao, M., Yuan, K.; Wang, Y.; Li, G.; Guo, J.; Gu, L.; Hu, W.;
Zhao, H.; Tang, Z. Metal–organic frameworks as selectivity regulators
for hydrogenation reactions. Nature 2016, 539, 76–80.
(29) Rungtaweevoranit, B.; Baek, J.; Araujo, J. R.; Archanjo, B. S.;
Choi, K. M.; Yaghi, O. M.; Somorjai, G. A. Copper nanocrystals
encapsulated in Zr-based metal−organic frameworks for highly
selective CO2 hydrogenation to methanol. Nano Lett. 2016, 16,
7645−7649.
(30) Yoshimaru, S.; Sadakiyo, M.; Staykov, A.; Katoc, K.; Yamauchi,
M. Modulation of the catalytic activity of Pt nanoparticles through
charge-transfer interactions with metal–organic frameworks. Chem.
Commun. 2017, 53, 6720–6723.
(31) Kobayashi, H.; Taylor, J. M.; Mitsuka, Y.; Ogiwara, N.;
Yamamoto, T.; Toriyama, T.; Matsumura, S.; Kitagawa, H. Charge
transfer dependence on CO2 hydrogenation activity to methanol in Cu
nanoparticles covered with metal–organic framework systems. Chem.
Sci. 2019, 10, 3289–3294.
(32) Corey, J. Y. Reactions of Hydrosilanes with Transition Metal
Complexes and Characterization of the Products. Chem. Rev. 2011, 111,
863–1071.
(33) Chen, J.; McGraw, M.; Chen, E. Y.-X. Diverse catalytic systems
and mechanistic pathways for hydrosilylative reduction of CO2.
ChemSusChem 2019, 12, 4543–4569.
(34) Liu, J.; Chen, L.; Cui, H.; Zhang, J.; Zhang, L.; Su, C,-Y.
Applications of metal–organic frameworks in heterogeneous
supramolecular catalysis. Chem. Soc. Rev. 2014, 43, 6011–6061.
(35) Zhang, L.; Liu, J.; Su, C.-Y. Application of metal-organic
frameworks in CO2 capture and conversion. Noncovalent interactions
in catalysis. Catalysis Series No. 36. The Royal Society of Chemistry
2019, 455–478.
(36) Zhang, L.; Liu, J.; Su, C.-Y. Porphyrin metal–organic frameworks
in heterogeneous supramolecular catalysis. Series on Chemistry,
Energy and the Environment V7, World Scientific Publishing Co Pte
Ltd 2020, 225–265.
(37) Liu, J.; Fan, Y.-Z.; Li, X.; Wei, Z.; Xu, Y.-W.; Zhang, L.; Su, C.-
Y. A porous rhodium(III)-porphyrin metal-organic framework as an
efficient and selective photocatalyst for CO2 reduction. Appl. Catal. B
2018, 231, 173–181.
(38) Liu, J.; Fan, Y.-Z.; Li, X.; Xu, Y.-W.; Zhang, L.; Su, C.-Y.
Catalytic space engineering of porphyrin metal–organic frameworks
for combined CO2 capture and conversion at a low concentration.
ChemSusChem 2018, 11, 2340–2347.
(39) Wang, Y.; Cui, H.; Wei, Z.-W.; Wang, H.-P.; Zhang, L.; Su, C.-
Y. Engineering catalytic coordination space in a chemically stable Ir-
porphyrin MOF with a confinement effect inverting conventional Si–H
insertion chemoselectivity. Chem. Sci. 2017, 8, 775–780.
(40) Li, S.; Mei, H.-M.; Yao, S.-L.; Chen, Z.-Y.; Lu, Y.-L.; Zhang, L.;
Su, C.-Y. Well-distributed Pt-nanoparticles within confined
coordination interspaces of self-sensitized porphyrin metal–organic
frameworks: synergistic effect boosting highly efficient photocatalytic
hydrogen evolution reaction. Chem. Sci. 2019, 10, 10577–10585.
stable porphyrinic metal-organic frameworks based on iron-oxo chain
cluster: design, synthesis and biomimetic catalysis, J. Mater. Chem. A
2020, 8, 8376-8382.
(42) Feng, D.; Gu, Z.-Y.; Li, J.-R.; Jiang, H.-L.; Wei, Z.; Zhou, H.-C.
Zirconium-metalloporphyrin PCN-222: mesoporous metal-organic
frameworks with ultrahigh stability as biomimetic catalysts. Angew.
Chem. Int. Ed. 2012, 51, 10307–10310.
(43) Morris, W.; Volosskiy, B.; Demir, S.; Gándara, F.; McGrier, P. L.;
Furukawa, H.; Cascio, D.; Stoddart, J. F.; Yaghi, O. M. Synthesis,
structure, and metalation of two new highly porous zirconium
metal−organic frameworks. Inorg. Chem. 2012, 51, 6443−6445.
(44) Chen, Y.; Hoang, T.; Ma, S. Biomimetic catalysis of a porous iron-
based metal−metalloporphyrin framework. Inorg. Chem. 2012, 51,
12600−12602.
(45) Volosskiy, B.; Niwa, K.; Chen, Y.; Zhao, Z.; Weiss, N. O.; Zhong,
X.; Ding, M.; Lee, C.; Huang, Y.; Duan, X. Metal-organic framework
templated synthesis of ultrathin, well-aligned metallic nanowires. ACS
Nano 2015, 9, 3044-3049.
(46) Chen, Y.-Z.; Jiang, H.-L. Porphyrinic metal−organic framework
catalyzed heck-reaction: Fluorescence “turn-on” sensing of Cu(II) ion.
Chem. Mater. 2016, 28, 6698−6704.
(47) Wang, Q.; Xu, R.; Wang, X.-S.; Liu, S.-D.; Huang, Y.-B.; Cao, R.
Platinum nanoparticle-decorated porous porphyrin-based metal-
organic framework for photocatalytic hydrogen production. Chinese J.
Inorg. Chem. 2017, 33, 2038−2044.
(48) Hutter, J.; Lannuzzi, M.; Sciffmann, F.; VandeVondele, J. CP2K:
atomistic simulations of condensed matter systems. Wiley Interdiscip
Rev. Comput. Mol. Sci. 2014, 4, 15−25.
(49) Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient
approximation made simple. Phys. Rev. Lett. 1996, 77, 3865−3868.
(50) Joost, V.; Hutter, J. Gaussian basis sets for accurate calculations
on molecular systems in gas and condensed phases. J. Chem. Phys.
2007, 127, 114105.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(51) Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian
pseudopotentials. Phys. Rev. B. 1996, 54, 1703−1710.
(52) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.;
Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.;
Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.;
Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima,
T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A. J.;
Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin,
K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.;
Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.;
Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J.
B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R.
E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.;
Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador,
P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.;
Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J., Gaussian 09,
Revision D.01; Gaussian, Inc.: Wallingford, CT, 2013.
(53) Breneman, C. M.; Wiberg, K. B. Determining atom-centered
monopoles from molecular electrostatic potentials-the need for high
sampling density in formamide conformational-analysis. J. Comput.
Chem, 1990, 11, 361−73.
(54) Zhao, Y.; Truhlar, D. G.; A new local density functional for main-
group thermochemistry, transition metal bonding, thermochemical
kinetics, and noncovalent interactions, J. Chem. Phys. 2006, 125, 1−18.
(55) Binning, R. C.; Curtiss, L. A. Compact contracted basis-sets for
3rd-row atoms -GA-KR, J. Comput. Chem. 1990, 11, 1206−16.
(56) Wedig, U.; Dolg, M.; Stoll, H.; Preuss, H. Quantum chemistry: the
challenge of transition metals and coordination chemistry[M]. Springer,
Dordrecht, 1986, 79−89.
(57) Batsanov, S. Van der Waals radii of elements. Inorg. Mater. 2001,
37, 871−885.
(58) Garzón, I. L.; Michaelian, K.; Beltrán, M. R.; Posada-Amarillas,
A.; Ordejón, P.; Artacho, E.; Sánchez-Portal, D.; Soler J. M. Lowest
energy structures of gold nanoclusters. Phys. Rev. Lett. 1998, 81,
1600−1603.
ACS Paragon Plus Environment