424
Helv. Chim. Acta 2016, 99, 416 – 424
Synthesis of 1,10,100-Benzene-1,3,5-triyltris{3-[(1S)-1-phenyl-
ethyl]urea} (4). 1,3,5-benzenetricarbonyl trichloride
Chem. 2002, 2, 247; B. Dietrich, T. M. Fyles, J.-M. Lehn, L. G.
Pease, D. L. Fyles, J. Chem. Soc., Chem. Commun. 1978, 934.
[7] A. I. Vicente, J. M. Caio, J. Sardinha, C. Moiteiro, R. Delgado,
(0.300 g, 1.13 mmol) and sodium azide (0.441 g, 6.78 mmol)
were allowed to react according to the General Procedure
for 120 min to give the product corresponding. Then ben-
zene-1,3,5-tricarbonyl azide was left stirring at 80 °C for 3 h
to obtain the isocyanate. Then (–)-(S)-a-phenylethylamine
(0.47 ml, 3.73 mmol) was added and the reaction mixture
was stirred overnight at 80 °C to afford 0.255 g (40% yield)
ꢀ
V. Felix, Tetrahedron 2012, 68, 670.
ꢀ
[8] F. de la Torre, E. G. Campos, S. Gonzalez, J. R. Moran,
C. Caballero, Tetrahedron 2001, 57, 3945.
[9] a) T. Y. Joo, N. Singh, G. W. Lee, D. O. Jang, Tetrahedron
Lett. 2007, 48, 8846; b) V. Simic, L. Bouteiller, M. Jalabert, J.
Am. Chem. Soc. 2003, 125, 13148; c) T. Akita, Y. Matsui, T.
Yamamoto, J. Mol. Struct. 2014, 1060, 138.
[10] P. D. Beer, P. A. Gale, Angew. Chem., Int. Ed. 2001, 40, 486.
ꢀ
[11] C. Roussel, M. Roman, F. Andreoli, A. Del Rıo, R. Faure, N.
20
as a white solid (M.p. > 300 °C). ½aꢂD = ꢀ39.2 (c = 1,
DMSO). IR (KBr) 3299, 1552 (N–H), 1641 (C=O). 1H-NMR
(400 MHz, (D6)DMSO): 1.36 (d, 9 H, J = 6.9); 4.78 (m, 3
H); 6.43 (d, 3 H, J = 7.8); 7.06 (s, 3 H); 7.20 – 7.24 (m, 3 H);
7.31 – 7.32 (m, 12 H); 8.29 (s, 3 H). 13C-NMR (100 MHz,
(D6)DMSO): 23.5; 48.9; 100.4; 126.2; 127.1; 128.7; 141.2;
145.6; 154.7. Anal. Calcd. C33H36N6O3 (564.68): C 70.19, H
6.43, N 14.88; found C 69.92, H 6.45, N 14.57.
Vanthuyne, Chirality 2006, 18, 762.
€
[12] M. -L. L. Watat, T. Dulcks, D. Kemken, V. A. Azov, Tetrahe-
dron Lett. 2014, 55, 741.
[13] B. C. Hamann, N. R. Branda, J. Rebek Jr, Tetrahedron Lett.
1993, 34, 6837.
[14] L. Fielding, Tetrahedron, 2000, 56, 6151; P. Job, Ann. Chim.
1928, 9, 113.
[15] M. J. Hynes, J. Chem Soc., Dalton Trans. 1993, 311
[16] A. M. Koster, G. Geudtner, P. Calaminici, M. E. Casida, V. D.
ꢀ
Domınguez, R. Flores-Moreno, G. U. Gamboa, A. Goursot, T.
Heine, A. Ipatov, F. Janetzko, J. M. del Campo, J. U. Reveles,
1
General Procedure for H-NMR Titrations
ꢀ~
ꢀ
A. Vela, B. Zuniga-Gutierrez, D. R. Salahub, deMon2k, Ver-
sion 3, The deMon developers, Cinvestav, Mexico City, 2011.
[17] M. Carmona-Picardo, R. L. Camacho-Mendoza, L. A. Zarate
In a NMR tube, 0.005 mmol of the urea was dissolved in
1
0.5 ml of (D6)DMSO. A H-NMR spectrum was acquired
and the signals in the chemical shift of NH accounted as
free urea. The titrations were carried out by the consecu-
tive additions of tetrabutylammonium salts (NBu4+Xꢀ;
Xꢀ=CH3COOꢀ,C6H5COOꢀ, Fꢀ, Clꢀ) stock solution until
the chemical shift of the HB or HC reached steady values
which was accounted as the urea-anion adduct. With the
data of concentration and chemical shifts during the titra-
tion the binding constants with WINEQNMR2 [15] were
obtained. The stock solution of carboxylate of tetrabutyl-
ammonium was prepared with 0.2 mmol of AcOH in 2 ml
of tetrabutylammonium hydroxide (0.1M in iPrOH and
MeOH), this mixture was placed in an ultrasonic bath for
25 min, the solvents were reduced to dryness before addi-
tion of 1 ml of (D6)DMSO.
ꢀ
Hernandez, J. Cruz-Borbolla, C. A. Gonzalez-Ramırez, T. Pan-
diyan, N. Jayanthi, Comp. Theor. Chem. 2014, 1047, 47.
ꢀ
ꢀ
[18] M. Hernandez-Rodrıguez, R. Melgar-Fernandez, E. Juaristi, J.
Phys. Org. Chem. 2005, 18, 792; K.-E. Trejo-Huizar, R. Ortiz-
ꢀ
ꢀ
~
Rico, M. A. Pena-Gonzalez, M. Hernandez-Rodrıguez, New. J.
ꢀ
ꢀ
ꢀ
Chem. 2013, 37, 2610.
[19] A. D. Becke, J. Chem. Phys. 1993, 98, 5648.
[20] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.
[21] O. A. Vydrov, G. E. Scuseria, J. Chem. Phys. 2006, 125, 234109.
[22] J. Tirado-Rives, W. L. Jorgensen, J. Chem. Theory Comput.
2008, 4, 297; S. Kozuch, S. M. Bachrach, J. M. L. Martin, J.
Phys. Chem. A 2014, 118, 293; M. Walker, A. J. A. Harvey, A.
Sen, C. E. H. Dessent, J. Phys. Chem. A 2013, 117, 12590.
[23] G. Scalmani, M. J. Frisch, J. Chem. Phys. 2010, 132, 114110.
[24] S. F. Boys, F. Bernardi, Mol. Phys. 1970, 19, 553.
[25] R. F. W. Bader, ‘Atoms in Molecules a Quantum Theory’,
Clarendon Press, Oxford, 1990; R. F. W. Bader, Acc. Chem.
Res. 1985, 18, 9; R. F. W. Bader, Chem. Rev. 1991, 91, 893.
[26] T. Lu, F. Chen, J. Comp. Chem. 2012, 33, 580.
[27] T.-H. Tang, W.-J. Hu, D.-Y. Yan, Y.-P. Cui, J. Mol. Struct.:
THEOCHEM 1990, 207, 319.
REFERENCES
[1] J.-M. Lehn, ‘Supramolecular chemistry: concepts and perspec-
tives’, VCH, Weinheim, 1985.
[28] U. Koch, P. L. A. Popelier, J. Phys. Chem. 1995, 99, 9747.
[29] I. Rozas, I. Alkorta, J. Elguero, J. Am. Chem. Soc. 2000, 122,
11154.
[2] V. Amendola, L. Fabbrizzi, L. Mosca, Chem. Soc. Rev. 2010,
39, 3889.
[3] T. P. Vishnyakova, I. A. Goluveva, E. V. Glebova, Russ. Chem.
Rev. (Engl. Transl.) 1985, 54, 249.
[30] S.-H. Huang, Z.-W. Bai, J.-W. Feng, Magn. Reson. Chem. 2009,
47, 423.
[4] P. M. Pinko, ‘Hydrogen Bonding in Organic Synthesis’, Wein-
heim, Wiley-VCH 2009; A. G. Doyle, E. N. Jacobsen, Chem.
Rev. 2007, 107, 5713.
Received July 7, 2015
Accepted April 18, 2016
[5] D. Seidel Synlett, 2014, 25, 783.
[6] C. Schmuck, J. Dudaczek, Tetrahedron Lett. 2005, 46, 7101; A.
L. Fan, H. K. Hong, S. Valiyaveettil, J. J. Vittal, J. Supramol.
€
© 2016 Verlag Helvetica Chimica Acta AG, Zurich