ACS Catalysis
Letter
(7) Choi, J.-H.; Heim, L. E.; Ahrens, M.; Prechtl, M. H. G. Dalton
Trans. 2014, 43, 17248−17254.
RuCl2]2, is also able to catalyze the aldehyde−water shift
reaction at similar levels of selectivity and conversion in pure
water. In a mixed solvent system, the diamine was found to be
essential for catalyst longevity. The best diamine precatalyst,
Ru(PDA), was found to be a competent precatalyst for the
oxidation of a range of aliphatic aldehydes. This reaction
provides a new, mild route for production of carboxylic acids
alongside a valuable byproduct, dihydrogen. Ongoing studies
are now investigating the reaction mechanism and the exact
nature of the active catalytic species for both the diamine-
ligated and [(p-cymene)RuCl2]2 precatalyst systems.
(8) Li, H.; Hall, M. B. J. Am. Chem. Soc. 2014, 136, 383−395.
(9) Cook, J.; Hamlin, J. E.; Nutton, A.; Maitlis, P. M. J. Chem. Soc.,
Chem. Commun. 1980, 144−145.
(10) Cook, J.; Hamlin, J. E.; Nutton, A.; Maitlis, P. M. J. Chem. Soc.,
Dalton Trans. 1981, 2342−2352.
(11) Ou, W. C.; Cundari, T. R. ACS Catal. 2015, 5, 225−232.
(12) Ohkuma, T.; Utsumi, N.; Tsutsumi, K.; Murata, K.; Sandoval,
C.; Noyori, R. J. Am. Chem. Soc. 2006, 128, 8724−8725.
(13) Morris, R. H. J. Am. Chem. Soc. 2014, 136, 1948−1959.
(15) Two products were observed in all reactions: the desired
carboxylic acid and the corresponding alcohol. % acid indicates the
percent of converted product observed as the carboxylic acid. The
remaining product, in all cases, is the alcohol. For example, 85(6)%
acid indicates 15(6)% alcohol.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(16) Garcia, G.; Solano, I.; Sanchez, G.; Santana, M. D.; Lopez, G.;
Casabo, J.; Molins, E.; Miravitlles, C. J. Organomet. Chem. 1994, 467,
119−126.
Experimental details (PDF)
(17) Bierenstiel, M.; Dymarska, M.; de Jong, E.; Schlaf, M. J. Mol.
Catal. A: Chem. 2008, 290, 1−14.
AUTHOR INFORMATION
■
(18) Zuccaccia, D.; Macchioni, A. Organometallics 2005, 24, 3476−
3486.
Corresponding Authors
(19) Nova, A.; Taylor, D. J.; Blacker, A. J.; Duckett, S. B.; Perutz, R.
N.; Eisenstein, O. Organometallics 2014, 33, 3433−3442.
(20) Crabtree, R. H. Chem. Rev. 2015, 115, 127−150.
(21) Bennett, M. A.; Huang, T.-N.; Matheson, T. W.; Smith, A. K.;
Ittel, S.; Nickerson, W. Inorg. Synth. 1982, 21, 74−78.
(22) This precursor was previously investigated for aldehyde
disproportionation activity at decreased temperature in references 9
and 10.
(23) Only 67(4)% of the substrate/products was recovered in this
reaction so a meaningful comparison of percent conversion is not
possible.
(24) Approximately 50% of the expected H2 pressure was detected by
lost upon puncturing the pressure-relief vial with the pressure sensor
and this would account for the underdetection of pressure.
Present Address
†(T.P.B.) Department of Chemistry, University of Memphis,
Memphis, TN 38512
Author Contributions
All authors have given approval to the final version of the
manuscript.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was funded by NSF under the CCI Center for
Enabling New Technologies through Catalysis (CENTC),
CHE-1205189 and by the Washington NASA Space Grant
(research award to J.C.T.). The authors thank Dr. Sophia D. T.
Cherry for providing Ru(TsPDA), Danielle A. Henckel for help
with hydrogen quantitation, and Prof. Gojko Lalic for helpful
discussions.
REFERENCES
■
(1) Smith, M. B.; March, J. March’s Advanced Organic Chemistry:
Reactions, Mechanisms and Structure, 6th ed.; John Wiley and Sons, Inc:
Hoboken, NJ, 2007.
(2) Stanley, G. G.; Aubry, D. A.; Bridges, N.; Barker, B.; Courtney, B.
ACS Div. Fuel Chem. Prepr. 2004, 49, 712−714.
(3) Brewster, T. P.; Ou, W. C.; Tran, J. C.; Goldberg, K. I.; Hanson,
S. K.; Cundari, T. R.; Heinekey, D. M. ACS Catal. 2014, 4, 3034−
3038.
(4) Murahashi, S.; Naota, T.; Ito, K.; Maeda, Y.; Taki, H. J. Org.
Chem. 1987, 52, 4319−4327.
(5) (a) Balaraman, E.; Khaskin, E.; Leitus, G.; Milstein, D. Nat. Chem.
2013, 5, 122−125. (b) Khusnutdinova, J. R.; Ben-David, Y.; Milstein,
D. J. Am. Chem. Soc. 2014, 136, 2998−3001. (c) Gellrich, U.;
Khusnutdinova, J. R.; Leitus, G. M.; Milstein, D. J. Am. Chem. Soc.
2015, 137, 4851−4859. (d) Hu, P.; Ben-David, Y.; Milstein, D. J. Am.
Chem. Soc. 2016, 138, 6143−6146. (e) Hu, P.; Diskin-Posner, Y.; Ben-
David, Y.; Milstein, D. ACS Catal. 2014, 4, 2649−2652.
(6) (a) Rodriguez-Lugo, R. E.; Trincado, M.; Vogt, M.; Tewes, F.;
Santiso-Quinones, G.; Grutzmacher, H. Nat. Chem. 2013, 5, 342−347.
̈
(b) Zweifel, T.; Naubron, J.-V.; Grutzmacher, H. Angew. Chem., Int. Ed.
2009, 48, 559−563.
̈
6305
ACS Catal. 2016, 6, 6302−6305