3
conditions. meta-Substituted, as well as disubstituted
acetophenones, also reacted well to afford the desired products in
good to excellent yields (3l-3n). Other aromatic rings such as
naphthyl, indolyl, and thiophenyl were tolerated giving the
corresponding amides in good to excellent yields (3o-3r).
Propiophenone also furnished exclusively the phenyl migrated
product (3s). On the other hand, when α-branched or cycloalkyl-
phenylketones were used, a separable mixture of regioisomers
was formed due to the comparable migratory aptitude of the aryl
and branched alkyl groups (3t and 3u). Gratifyingly, aliphatic
cyclic and acyclic ketones were also smoothly converted into the
corresponding amides and lactams, albeit at elevated
temperatures (3v and 3w). Whereas benzophenone reacted well
to give amide in good yield, the unsymmetrical benzophenone
offered a mixture of products due to the comparable migrating
properties of the two aryl groups (3x and 3y). Even a complex
ketone such as pregnenolone gave the respective amide (3z) in
References
[
Chem. 2018, 20, 5082-5103; (b) Edgars, A.; Ramona, A. Curr. Org.
Chem. 2018, 22, 1486-1504; (c) Chandrasekhar, S. The Beckmann and
Related Reactions. Comprehensive Organic Synthesis II, 2014, 770-
8
00; (d) Constable, D. J. C.; Dunn, P. J.; Hayler, J. D.; Humphrey, G.
R.; Leazer, J. L.; Jr. Linderman, R. J.; Lorenz, K.; Manley, J.; Pearlman,
B. A.; Wells, A.; Zaks, A.; Zhang, T. Y. Green Chem. 2007, 9, 411-420;
e) Benz, G. Synthesis of Amides and Related Compounds,
(
Comprehensive Organic Synthesis, Vol 6, 1991, 381-417.
[
2] (a) Debnath, P. Current Organic Synthesis 2018, 15, 666-706; (b)
Rojas, C. M. in Molecular Rearrangements in Organic Synthesis, John
Wiley & Sons, Inc. 2015, 111-150; (d) Sarkar, S.; Gangopadhyay, P.
Int. J. Curr. Pharm. Res. 2014, 6, 1-2; (c) Smith, M. B.; March, J. In
th
Advance Organic Chemistry, 5 ed., John Willey and Sons: New York,
001, 1415, and the references therein; (d) Gawley, R. E. Org. React.
988, 35, 1-420.
2
1
9
0% yield.
[
3] (a) Beckmann, E. Ber. Dtsch. Chem. Ges. 1886, 19, 988-993; (b) Blatt,
A. H. Chem. Rev. 1933, 12, 215-260.
A plausible mechanism is described in Scheme 3. Ketone 1
reacts with MSH 2 to give mesitylenesulfonyloxime intermediate
A which undergoes Beckmann rearrangement via a concerted
[
4] (a) Kiely-Collins, H. J.; Sechi, I.; Brennan, P. E.; McLaughlin, M. G.
Chem. Commun. 2018, 54, 654-657; (b) Mo, X.; Morgan, T. D. R.; Ang,
H. T.; Hall, D. G. J. Am. Chem. Soc. 2018, 140, 5264-5271; (c) An N.;
Tian, B.-X.; Pi, H.-J.; Eriksson, L. A.; Deng, W.-P. J. Org. Chem. 2013,
78, 4297-4302; (d) Augustine, J. K.; Kumar, R.; Bombrun, A.; Mandal,
A. B. Tetrahedron Lett. 2011, 52, 1074-1077; (e) Vanos, C. M.;
Lambert, T. H. Chem. Sci. 2010, 1, 705-708; (f) Pi, H.-J.; Dong, J.-D.;
An, N.; Du, W.; Deng, W.-P. Tetrahedron 2009, 65, 7790-7793; (g)
Hashimoto, M.; Obora, Y.; Sakaguchi, S.; Ishii, Y. J. Org. Chem. 2008,
5
g
1
,2-intramolecular shift to form intermediate B, followed by
nucleophilic attack of H O to give C. Deprotonation of C
2
provides D, which further tautomerizes into the corresponding
amide 3.
O
O
H N
2
S
O
O
O
O
Ar
S
N
R1
R1
7
3, 2894-2897; (h) Ronchin, L.; Vavasori, A.; Bortoluzzi, M. Catal.
2
N
R2
Commun. 2008, 10, 251-256; (i) Zhu, M.; Cha C.; Deng, W.-P.; Shi, X.-
X. Tetrahedron Lett. 2006, 47, 4861-4863; (j) Furuya, Y.; Ishihara, K.;
Yamamoto, H. J. Am. Chem. Soc. 2005, 127, 11240-11241; (k) Jochims,
J.; Helh, S.; Herzberger, S. Synthesis 1999, 1128-1133.
R1
R2
O
-H2O
Ar
R2
-ArSO3
1
A
B
Ar = mesityl
H O
[5] (a) Gao, Y.; Liu, J.; Li, Z.; Guo, T.; Xu, S.; Zhu, H.; Wei, F.; Chen, S.;
Gebru, H.; Guo K. J. Org. Chem. 2018, 83, 2040-2049; (b) Srivastava,
V. P.; Yadav, A. K.; Yadav, L. D. S. Synlett 2014, 25, 665-670; (c)
Ramon, R. S.; Bosson, J.; Diez-Gonzalez, S.; Marion, N.; Nolan, S. P. J.
Org. Chem. 2010, 75, 1197-1202; (d) Ganguly, N. C.; Mondal, P.
Synthesis 2010, 3705-3709; (e) Chandrasekhar, S.; Gopalaiah, K.
Tetrahedron Lett. 2003, 44, 755-756; (f) Sharghi, H.; Hosseini, M.
Synthesis 2002, 1057-1059; (g) Luca, L. D.; Giacomelli, G.; Porcheddu,
A. J. Org. Chem. 2002, 67, 6272-6274.
2
H
O
H
H
O
O
ArSO3
R1
R1
N
R2
R2
-
ArSO H
R1
N
3
R2
H
N
D
C
3
Scheme 3. Proposed Mechanism.
[6] Hyodo, K.; Hasegawa, G.; Oishi, N.; Kuroda, K.; Uchida, K. J. Org.
Chem. 2018, 83, 13080-13087.
[7] (a) Tamura, Y.; Fujiwara, H.; Sumoto, K.; Ikeda, M.; Kita, Y. Synthesis
1
1
973, 215-216; (b) Tamura, Y.; Minamikawa, J.; Ikeda, M. Synthesis
977, 1-17.
In conclusion, we have developed a direct method for the
synthesis of secondary amides and lactams from a variety of
ketones using MSH. This method is operationally simple and
does not require acid or any other additive. Labile or reactive
functional groups such as ester, alcohol, phenolic-OH, Boc, halo,
and alkenes, were tolerated under our optimized reaction
conditions. The various secondary amides were obtained in good
to excellent yields. The products were isolated in high purity
after aqueous work-up.
[
8] (a) Sabir, S.; Pandey, C. B.; Yadav, A. K.; Tiwari, B.; Jat, J. L. J.
Org.Chem. 2018, 83, 12255-12260; (b) Sabir, S.; Kumar, G. Jat, J. L.
Org. Biomol. Chem. 2018, 16, 3314-3327; (c) Munnuri, S.; Verma, S.;
Chandra, D.; Anugu, R. R.; Falck, J. R.; Jat, J. L. Synthesis 2019, 51,
3
709-3714.
Acknowledgements
Financial support by SERB (YSS/2015/000838 and
CRG/2018/004424), New Delhi, India is gratefully
acknowledged. S. V. thanks CSIR-New Delhi for the fellowship.
☐
The authors declare that they have no known
Declaration of interests
competing financial interests or personal
relationships that could have appeared to influence
the work reported in this paper.