ChemComm
Communication
D. A. Thaisrivongs, J. Am. Chem. Soc., 2008, 130, 14092–14093;
(b) B. M. Trost and D. A. Thaisrivongs, J. Am. Chem. Soc., 2009,
131, 12056–12057; (c) B. M. Trost, D. A. Thaisrivongs and J. Hartwig,
J. Am. Chem. Soc., 2011, 133, 12439–12441; (d) S. Vera, Y. K. Liu,
M. Marigo, E. C. Escudero-Adan and P. Melchiorre, Synlett, 2011,
489–494; (e) T. Li, J. Zhu, D. Wu, X. Li, S. Wang, H. Li, J. Li and
W. Wang, Chem. – Eur. J., 2013, 19, 9147–9150; ( f ) M. Meazza,
V. Ceban, M. B. Pitak, S. J. Coles and R. Rios, Chem. – Eur. J., 2014,
20, 16853–16857.
8 For selected examples of borylative three-component coupling reactions
not involving imines, see: (a) H. Y. Cho and J. P. Morken, J. Am. Chem.
Soc., 2008, 130, 16140–16141; (b) S. Mannathan, M. Jeganmohan and
C.-H. Cheng, Angew. Chem., Int. Ed., 2009, 48, 2192–2195; (c) H. Y. Cho
and J. P. Morken, J. Am. Chem. Soc., 2010, 132, 7576–7577; (d) H. Y. Cho,
Z. Yu and J. P. Morken, Org. Lett., 2011, 13, 5267–5269; (e) A. Welle,
V. Cirriez and O. Riant, Tetrahedron, 2012, 68, 3435–3443; ( f ) F. Meng,
H. Jang, B. Jung and A. H. Hoveyda, Angew. Chem., Int. Ed., 2013, 52,
5046–5051; (g) F. Meng, K. P. McGrath and A. H. Hoveyda, Nature, 2014,
513, 367–374; (h) K. Semba, N. Bessho, T. Fujihara, J. Terao and Y. Tsuji,
Angew. Chem., Int. Ed., 2014, 53, 9007–9011; (i) F. Meng, F. Haeffner and
A. H. Hoveyda, J. Am. Chem. Soc., 2014, 136, 11304–11307.
imine 2a was repeated to give alkylboronate 5. Without isolation,
5 was reacted with bromobenzene under Suzuki–Miyaura cross-
coupling conditions described previously17 using RuPhos18 as the
ligand, to give the phenylated product 6 in 47% yield over two steps
as a single diastereoisomer (crude dr 6 : 1) (Scheme 2).19,20
The Boc group of the products may be removed under acidic
conditions, as demonstrated by the deprotection of 3b using
TMSCl in MeOH,2,3 which provided the bishydrochloride salt
7 in 499% yield (eqn (1)).
(1)
In conclusion, we have demonstrated the utility of vinyl-
azaarenes as substrates for copper-catalyzed borylative couplings
with N-Boc imines. The reactions provide, after oxidation of the
initially formed alkylboronates, azaarene-containing, Boc-protected
amino alcohols with moderate-to-good diastereoselectivities. Future
work will be focused on the development of enantioselective
variants of this process.21
9 For borylative three-component coupling reactions of allenes and
imines, see: (a) J. D. Sieber and J. P. Morken, J. Am. Chem. Soc., 2006,
128, 74–75; (b) J. Rae, K. Yeung, J. J. W. McDouall and D. J. Procter,
Angew. Chem., Int. Ed., 2016, 55, 1102–1107.
10 For Cu-catalyzed three-component borylative aldol reactions of
a,b-unsaturated carbonyl compounds with carbonyl compounds,
see ref. 8e.
We thank the EPSRC (Industrial CASE studentship to J. J. S.
and Leadership Fellowship to H. W. L, grant no. EP/I004769/1
and EP/I004769/2), GlaxoSmithKline, and the ERC (Starting
Grant No. 258580) for financial support. We thank Dr. William
Lewis at the University of Nottingham for X-ray crystallography,
and Dr. Alan Nadin (GlaxoSmithKline) for helpful discussions.
11 For examples of biologically active compounds containing a 2-(amino-
alkyl)azaarene substructure, which are produced using the methodology
described herein, see references cited within ref. 2.
12 In several cases, increasing the temperature significantly above
40 1C led to appreciable quantities of the products resulting from
1,4-boration of the vinylazaarene without coupling to the imine.
Attempts to decrease the reaction times by increasing the concen-
tration led to solubility problems.
13 Other bidentate ligands examined included DPEphos, dppe, dppbz,
and bipy. No significant impact on the rate of the reaction was
observed, but compared with dppf, these ligands gave products in
poorer diastereomeric ratios. Using CuF(PPh)3Á2MeOH without an
additional bidentate ligand gave low yields of borylative coupling
products in poor diastereomeric ratios, along with significant
quantities of products resulting from 1,4-boration of the vinylazaarene
without coupling to the imine.
Notes and references
1 For reviews of catalytic enantioselective Friedel–Crafts additions of
electron-rich azaarenes to imines or enamides, see: (a) T. B. Poulsen
and K. A. Jørgensen, Chem. Rev., 2008, 108, 2903–2915; (b) M. Bandini and
A. Eichholzer, Angew. Chem., Int. Ed., 2009, 48, 9608–9644; (c) S.-L. You,
Q. Cai and M. Zeng, Chem. Soc. Rev., 2009, 38, 2190–2201; (d) G. Bartoli,
G. Bencivenni and R. Dalpozzo, Chem. Soc. Rev., 2010, 39, 4449–4465; 14 Control reactions conducted in the absence of the copper salt, but using
(e) V. Terrasson, R. M. de Figueiredo and J. M. Campagne, Eur. J. Org.
Chem., 2010, 2635–2655; ( f ) S. Kobayashi, Y. Mori, J. S. Fossey and
M. M. Salter, Chem. Rev., 2011, 111, 2626–2704.
2 D. Best, S. Kujawa and H. W. Lam, J. Am. Chem. Soc., 2012, 134,
18193–18196.
PPh3 (15.0 mol%) or dppf (5.0 mol%), with or without MeOH (10.0 mol%
or 5.0 equiv.), did not provide any products. For PPh3- or dppf-catalyzed
´
1,4-boration of a,b-unsaturated ketones, see: A. Bonet, H. Gulyas and
´
E. Fernandez, Angew. Chem., Int. Ed., 2010, 49, 5130–5134.
15 C. N. Farthing and S. P. Marsden, Tetrahedron Lett., 2000, 41, 4235–4238.
3 B. Choi, A. Saxena, J. J. Smith, G. H. Churchill and H. W. Lam, 16 See the ESI†.
Synlett, 2015, 350–351.
4 For reviews, see: (a) Boronic Acids: Preparation and Applications in
17 S. N. Mlynarski, C. H. Schuster and J. P. Morken, Nature, 2014, 505,
386–390.
Organic Synthesis, Medicine and Materials, ed. D. G. Hall, Wiley-VCH 18 M. D. Charles, P. Schultz and S. L. Buchwald, Org. Lett., 2005, 7,
Verlag GmbH & Co. KGaA, Weinheim, Germany, 2nd edn, 2011, 3965–3968.
vol. 1 and 2; (b) D. S. Matteson, J. Org. Chem., 2013, 78, 10009–10023; 19 For other examples of Suzuki–Miyaura coupling reactions of non-
(c) D. Leonori and V. K. Aggarwal, Acc. Chem. Res., 2014, 47,
3174–3183.
benzylic, non-allylic, alkyl pinacol boronates, see ref. 8e, 17 and:
(a) M. Sato, N. Miyaura and A. Suzuki, Chem. Lett., 1989, 1405–1408;
(b) G. Zou and J. R. Falck, Tetrahedron Lett., 2001, 42, 5817–5819;
(c) J. D. Lawrence, M. Takahashi, C. Bae and J. F. Hartwig, J. Am.
Chem. Soc., 2004, 126, 15334–15335; (d) C.-T. Yang, Z.-Q. Zhang,
H. Tajuddin, C.-C. Wu, J. Liang, J.-H. Liu, Y. Fu, M. Czyzewska,
P. G. Steel, T. B. Marder and L. Liu, Angew. Chem., Int. Ed., 2012, 51,
528–532; (e) R. Sakae, N. Matsuda, K. Hirano, T. Satoh and
M. Miura, Org. Lett., 2014, 16, 1228–1231; ( f ) L. Zhang, Z. Zuo,
X. Leng and Z. Huang, Angew. Chem., Int. Ed., 2014, 53, 2696–2700.
5 D. Best and H. W. Lam, J. Org. Chem., 2014, 79, 831–845.
6 For previous work from our group on CQN-containing azaarenes as
activating groups in enantioselective catalysis, see: (a) L. Rupnicki,
A. Saxena and H. W. Lam, J. Am. Chem. Soc., 2009, 131, 10386–10387;
(b) G. Pattison, G. Piraux and H. W. Lam, J. Am. Chem. Soc., 2010,
132, 14373–14375; (c) A. Saxena and H. W. Lam, Chem. Sci., 2011, 2,
2326–2331; (d) A. Saxena, B. Choi and H. W. Lam, J. Am. Chem. Soc.,
2012, 134, 8428–8431; (e) C. Fallan and H. W. Lam, Chem. – Eur. J.,
2012, 18, 11214–11218; ( f ) I. D. Roy, A. R. Burns, G. Pattison, 20 For Suzuki–Miyaura coupling of primary alkyltrifluoroborates, see:
B. Michel, A. J. Parker and H. W. Lam, Chem. Commun., 2014, 50,
2865–2868.
S. D. Dreher, S.-E. Lim, D. L. Sandrock and G. A. Molander, J. Org.
Chem., 2009, 74, 3626–3631.
7 For examples of CQN-containing azaarenes as activating groups in 21 Thus far, our preliminary efforts at developing an enantioselective
enantioselective catalysis from other groups, see: (a) B. M. Trost and
variant of these reactions have given only low enantiomeric excesses.
This journal is ©The Royal Society of Chemistry 2016
Chem. Commun.