Full Paper
[7] R. Li, Chinese J. Catal. 2017, 38, 5.
UV-2401 PC spectrophotometer with BaSO4 as the reference mate-
rial. Band gap values were determined by plotting the modified
Kubelka–Munk function, [F(R′∞)hν]1/2, vs. the energy of the exciting
light. The specific surface area (SSA) and the pore size distribution
(PSD) of the photocatalysts were determined by nitrogen adsorp-
tion-desorption measurements with a Micromeritics ASAP 2020 ap-
paratus. SSA's were calculated by the BET equation in the p/po
interval 0.05–0.33 while the PSD's were calculated by using the
Barrett Joyner Halenda (BJH) methods.
[8] K. Maeda, K. Domen, J. Phys. Chem. Lett. 2010, 1, 2655.
[9] R. Kothari, D. Buddhi, R. L. Sawhney, Renewable Sustainable Energy Rev.
2008, 12, 553.
[10] J. Zhu, M. Zäch, Curr. Opin. Colloid Interface Sci. 2009, 14, 260.
[11] H. Bahruji, M. Bowker, P. R. Davies, L. S. Al-Mazroai, A. Dickinson, J.
Greaves, D. James, L. Millard, F. Pedrono, J. Photochem. Photobiol. A 2010,
216, 115.
[12] M. Ni, M. K. H. Leung, D. Y. C. Leung, K. Sumathy, Renewable Sustainable
Energy Rev. 2007, 11, 401.
[13] D. I. Kondarides, V. M. Daskalaki, A. Patsoura, X. E. Verykios, Catal. Lett.
2008, 122, 26.
[14] M. de Oliveira Melo, L. Almeida Silva, J. Braz. Chem. Soc. 2011, 22, 1399.
[15] X. Fu, J. Long, X. Wang, D. Y. C. Leung, Z. Ding, L. Wu, Z. Zhang, Z. Li, X.
Fu, Int. J. Hydrogen Energy 2008, 33, 6484.
Transmission electron microscopy (TEM) measurements were car-
ried out by a JEOL (Japan) JEM-2100 electron microscope operating
at 200 KV, while HR-TEM images SAED (Selected Area Electron Dif-
fraction) patterns were obtained by a Gatan (USA) MSC camera.
Samples were prepared by dispersing them in 2 mL of deionized
water and by sonicating them for 5 minutes. A drop of each disper-
sion was spread on a copper holey carbon coated grid and dried
overnight prior TEM analysis. Particles size and atomic layers spac-
ing were measured by Gatan (USA) Digital Micrograph software.
[16] A. Puga, Coord. Chem. Rev. 2016, 315, 1.
[17] M. F. Kuehnel, E. Reisner, Angew. Chem. Int. Ed. 2018, 57, 3290.
[18] J. C. Colmenares, A. Magdziarz, A. Bielejewska, Bioresour. Technol. 2011,
102, 11254.
[19] R. Chong, J. Li, Y. Ma, B. Zhang, H. Han, C. Li, J. Catal. 2014, 314, 101.
[20] M. Bellardita, E. I. García-López, G. Marcì, B. Megna, F. R. Pomilla, L. Palmi-
sano, RSC Adv. 2015, 5, 59037.
[21] W. Deng, Q. Zhang, Y. Wang, Catal. Today 2014, 234, 31.
[22] M. Bellardita, E. García-López, G. Marcì, L. Palmisano, Int. J. Hydrogen En-
ergy 2016, 41, 5934.
[23] T. Montini, M. Monai, A. Beltram, I. Romero-Ocaña, P. Fornasiero, Mater.
Sci. Semicon. Proc. 2016, 42, 122.
[24] H. Dong, G. Zeng, L. Tang, C. Fan, C. Zhang, X. He, Y. He, Water Res. 2015,
79, 128.
[25] D. Dvoranová, V. Brezová, M. Mazúr, M. A. Malati, Appl. Catal. B 2002, 37,
91.
[26] A. Di Paola, E. García-López, S. Ikeda, G. Marcı`, B. Ohtani, L. Palmisano,
Catal. Today 2002, 75, 87.
[27] J. Choi, H. Park, M. R. Hoffmann, J. Phys. Chem. C 2010, 114, 783.
[28] L. Gomathi Devi, R. Kavitha, Appl. Catal. B 2013, 140–141, 559.
[29] R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 2014, 114, 9824.
[30] R. Amadelli, L. Samiolo, M. Borsa, M. Bellardita, L. Palmisano, Catal. Today
2013, 206, 19.
[31] J. Belošević-Cavor, K. Batalović, V. Koteski, J. Radaković, C. M. Rangel, Int.
J. Hydrogen Energy 2015, 40, 9696.
[32] B. Choudhury, B. Borah, A. Choudhury, Mater. Sci. Eng. B 2013, 178, 239.
[33] A. Kubacka, B. Bachiller-Baeza, G. Colón, M. Fernández-García, Appl. Catal.
B 2010, 93, 274.
[34] W. M. Campbell, A. K. Burrell, D. L. Officer, K. W. Jolley, Coord. Chem. Rev.
2004, 248, 1363.
[35] T. Wu, G. Liu, J. Zhao, H. Hidaka, N. Serpone, J. Phys. Chem. B 1998, 102,
5845.
[36] R. Fiorenza, M. Bellardita, S. Scirè, L. Palmisano, Catal. Today https://
[37] G. Longo, F. Fresno, S. Gross, U. L. Štangar, Environ. Sci. Pollut. Res. 2014,
21, 11189.
[38] D. P. Kumar, M. V. Shankar, M. M. Kumari, G. Sadanandam, B. Srinivas, V.
Durgakumari, Chem. Commun. 2013, 49, 9443.
4.3 Photocatalytic Activity: Some preliminary runs were carried
out under UV light (by using a 125 W medium pressure Hg lamp)
to test the efficiency of the catalysts. The lamp radiant power, meas-
ured by a radiometer Delta Ohm DO9721, was ca. 120 W m–2 in
the range 315–400 nm. Successively, all the prepared samples were
tested in a 1040 mL Pyrex cylindrical reactor illuminated by a 150 W
halogen lamp axially immersed within the photoreactor which was
filled with 800 mL of 1 m
M glucose solution. The lamp radiant
power was ca. 2100 W m–2 in the 450–750 nm range, and
17 W m–2 in the range 315–400 nm. N2 was bubbled into suspen-
sions for ca. 0.5 h under dark to remove O2 from the solution, then
the reactor was sealed and the lamp switched on for 6 h. The best
photocatalysts were tested also under natural solar light irradiation
by using a closed batch Pyrex reactor whose volume was 250 mL,
filled with 100 mL of glucose solution. In all cases, the amount of
catalyst used was 1.0 g L–1 of suspension. The runs under natural
solar light irradiation lasted 3.5 h. Glucose was used both as sacrifi-
cial agent for H2 production and as reagent to obtain high value
chemicals from its partial oxidation. For the sake of comparison
some experiments were performed by using formic acid instead of
glucose. The concentrations of glucose, photo-products and formic
acid were measured by a Thermo Scientific Dionex UltiMate 3000
HPLC equipped with a Diode Array and a refractive index detectors
equipped with a REZEK ROA Organic acid H+ column. An aqueous
2.5 m
M H2SO4 solution was used as the eluent at a flow rate of
0.6 mL min–1. The gaseous H2 and CO2 species were analyzed by
a HP 6890 Series GC System equipped with a Supelco GC 60/80
CarboxenTM-1000 packed column and a thermal conductivity de-
tector (TCD). Helium was used as the carrier gas. The error of analy-
sis was less than 5 %.
[39] L. Chen, X. Zhou, B. Jin, J. Luo, X. Xu, L. Zhang, Y. Hong, Int. J. Hydrogen
Energy 2016, 41, 7292.
[40] R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 2001, 293, 269.
[41] S. A. Ansari, M. M. Khan, M. O. Ansari, M. H. Cho, New J. Chem. 2016, 40,
3000.
[42] M. Bellardita, M. Addamo, A. Di Paola, L. Palmisano, A. M. Venezia, Phys.
Chem. Chem. Phys. 2009, 11, 4084.
Keywords: Photocatalysis · Doping · Titanium dioxide ·
Glucose reforming · Hydrogen evolution · Oxidation
[43] H. Irie, Y. Watanabe, K. Hashimoto, J. Phys. Chem. B 2003, 107, 5483.
[44] N. Serpone, J. Phys. Chem. B 2006, 110, 24287.
[45] M. Ilie, B. Cojocaru, V. I. Parvulescu, H. Garcia, Int. J. Hydrogen Energy
2011, 36, 15509.
[46] Y. Wang, L. Zhu, N. Ba, F. Gao, H. Xie, Mater. Res. Bull. 2017, 86, 268.
[47] Y. He, Z. Wu, L. Fu, C. Li, Y. Miao, L. Cao, H. Fan, B. Zou, Chem. Mater.
2003, 15, 4039.
[48] O. Lorret, D. Francova, G. Waldner, N. Stelzer, Appl. Catal. B 2009, 91, 39.
[49] H. Choi, D. Shin, B. C. Yeo, T. Song, S. S. Han, N. Park, S. Kim, ACS Catal.
2016, 6, 2745.
[1] J. D. Holladay, J. Hu, D. L. King, Y. Wang, Catal. Today 2009, 139, 244.
[2] S. E. Hosseini, M. A. Wahid, Renewable Sustainable Energy Rev. 2016, 57,
850.
[3] K. Mazloomi, C. Gomes, Renewable Sustainable Energy Rev. 2012, 16,
3024.
[4] N. Florin, A. Harris, Environmentalist 2007, 27, 207.
[5] R. M. Navarro, M. C. Sánchez-Sánchez, M. C. Alvarez-Galvan, F. del Valle,
J. L. G. Fierro, Energy Environ. Sci. 2009, 2, 35.
[6] N. Meng, D. Y. C. Leung, M. K. H. Leung, K. Sumathy, Fuel Process. Technol.
2006, 87, 461.
Eur. J. Inorg. Chem. 0000, 0–0
10
© 0000 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim