with methanol and filtered through Celite. Removal of solvent
under vacuum yielded a powdered dark-blue product. Removal of
solvents yielded 2.07 g (89%) of analytically pure product. Crystals
suitable for X-ray diffraction were obtained by slow evaporation
of a solution of 5 in a 1 : 1 mixture of hexanes and acetone. Anal.
Research Awards to P. K. and A. K. C.). P. K. also thanks the
Canadian Inorganic Chemistry Exchange (ICE) Program for a
summer work term placement. We thank Prof. F. M. Kerton for
use of a UV-vis spectrometer (acquired with the aid of an NSERC
RTI-I grant).
calcd for C34
H
54ClFeN
2
2
O : C, 66.50; H, 8.86; N, 4.56%. Found
C, 66.57; H, 9.05; N, 4.13%. MS (MALDI-TOF) m/z (%, ion):
Notes and references
+
+
+
6
13.20 (40, [M] ), 578.24 (100, [M − Cl] ), 525.34 (32, [L
3
] ). UV-
◦
vis (CH
3
OH) kmax, nm (e): 638 (4834), 343 (4828). leff (solid, 25 C):
1 S. Groysman, I. Goldberg, M. Kol, E. Genizi and Z. Goldschmidt,
Inorg. Chim. Acta, 2003, 345, 137; E. Y. Tshuva, S. Groysman, I.
Goldberg, M. Kol and Z. Goldschmidt, Organometallics, 2002, 21, 662;
A. Yeori, I. Goldberg and M. Kol, Macromolecules, 2007, 40, 8521; A.
Yeori, I. Goldberg, M. Shuster and M. Kol, J. Am. Chem. Soc., 2006,
5
.9 l .
B
[L
3
]FeBr 6. An identical procedure to that described for 5,
above, was employed using FeBr (1.13 g, 3.82 mmol). Yield: 2.47 g
98%). Crystals suitable for X-ray diffraction were obtained by
slow evaporation of a solution of 6 in a 1 : 1 mixture of hexanes
and acetone. Anal. calcd for C34 : C, 62.01; H, 8.26;
N, 4.25%. Found C, 62.34; H, 8.45; N 4.22%. MS (MALDI-TOF)
3
1
28, 13062; S. Gendler, S. Segal, I. Goldberg, Z. Goldschmidt and
(
M. Kol, Inorg. Chem., 2006, 45, 4783; S. Segal, I. Goldberg and M.
Kol, Organometallics, 2005, 24, 200; S. Groysman, E. Y. Tshuva, I.
Goldberg, M. Kol, Z. Goldschmidt and M. Shuster, Organometallics,
H
54BrFeN
2
O
2
2
004, 23, 5291; C. Lorber, F. Wolff, R. Choukroun and L. Vendier,
Eur. J. Inorg. Chem., 2005, 2850; A. J. Chmura, M. G. Davidson,
M. D. Jones, M. D. Lunn, M. F. Mahon, A. F. Johnson, P. Khunkam-
choo, S. L. Roberts and S. S. F. Wong, Macromolecules, 2006, 39,
7250.
+
+
m/z (%, ion): 656.89 (25, [M] ), 578.04 (100, [M − Br] ), 525.16
+
(
18, [L
3
] ). UV-vis (CH
3
OH) kmax, nm (e): 634 (5602), 343 (4888).
◦
l
eff (solid, 25 C): 6.2 l
B
.
2
E. Y. Tshuva, I. Goldberg and M. Kol, J. Am. Chem. Soc., 2000, 122,
1
0706.
X-Ray crystallography
3 Y. Sarazin, R. H. Howard, D. L. Hughes, S. M. Humphrey and M.
Bochmann, Dalton Trans., 2006, 340.
Crystallographic data for compounds 1, 3, 5 and 6 are summarized
in Table 1. All data collections were performed on a Rigaku AFC8-
Saturn 70 equipped with a CCD area detector, using graphite
4 F. M. Kerton, A. C. Whitwood and C. E. Willans, Dalton Trans., 2004,
2
237; H. E. Dyer, S. Huijser, A. D. Schwarz, C. Wang, R. Duchateau
and P. Mountford, Dalton Trans., 2008, 32; F. Bonnet, A. R. Cowley
and P. Mountford, Inorg. Chem., 2005, 44, 9046; A. Amgoune, C. M.
Thomas and J. F. Carpentier, Pure Appl. Chem., 2007, 79, 2013; A.
Amgoune, C. M. Thomas, T. Roisnel and J. F. Carpentier, Chem.–
Eur. J., 2005, 12, 169; Y. Yao, M. Ma, X. Xu, Y. Zhang, Q. Shen and
W. T. Wong, Organometallics, 2005, 24, 4014.
˚
monochromated Mo-Ka radiation (k = 0.71073 A). Suitable
crystals were selected and mounted on glass fibers using Paratone-
◦
N oil and freezing to either −120 or −160 C. In each case the
20
data were processed and corrected for Lorentz and polarization
5
6
For late transition metal complexes of amine-bis(phenolate) ligands
see: T. Nagataki and S. Itoh, Chem. Lett., 2007, 36, 748; L. Rodriguez,
E. Labisbal, A. Sousa-Pedrares, J. A. Garcia-Vazquez, J. Romero, M.
Luz Duran, J. A. Real and A. Sousa, Inorg. Chem., 2006, 45, 7903;
A. Philibert, F. Thomas, C. Philouze, S. Hamman, E. Saint-Aman and
J.-L. Pierre, Chem.–Eur. J., 2003, 9, 3803; O. Rotthaus, F. Thomas, O.
Jarjayes, C. Philouze, E. Saint-Aman and J.-L. Pierre, Chem.–Eur. J.,
2
1
effects and absorption. Neutral atom scattering factors for all
non-hydrogen atoms were taken from the International Tables
2
2
for X-ray Crystallography. All structures were solved by direct
2
3
methods using SIR92 and expanded using Fourier techniques
24
(
DIRDIF99). All non-hydrogen atoms were refined anisotropi-
2
006, 12, 6953.
cally. Hydrogen atoms were refined using the riding model.
For metal complexes of phenoxytriamine ligands see: W. A. Chomitz,
S. G. Minasian, A. D. Sutton and J. Arnold, Inorg. Chem., 2007, 46,
7199; H. Adams, N. A. Bailey, I. K. Campbell, D. E. Fenton and Q. Y.
He, J. Chem. Soc., Dalton Trans., 1996, 2233; M. C. B. de Oliveira,
M. Scarpellini, A. Neves, H. Terenzi, A. J. Bortoluzzi, B. Szpoganics,
A. Greatti, A. S. Mangrich, E. M. de Souza, P. M. Fernandez and
M. R. Soares, Inorg. Chem., 2005, 44, 921; S. Ito, S. Nishino, H. Itoh,
S. Ohba and Y. Nishida, Polyhedron, 1998, 17, 1637; I. A. Koval, M.
Huisman, A. F. Stassen, P. Gamez, M. Lutz, A. L. Spek and J. Reedijk,
Eur. J. Inorg. Chem., 2004, 591; M. M. Olmstead, T. E. Patten and C.
Troeltzsch, Inorg. Chim. Acta, 2004, 357, 619; N. Reddig, D. Pursche
and A. Rompel, Dalton Trans., 2004, 1474; N. Reddig, D. Pursche, B.
Krebs and A. Rompel, Inorg. Chim. Acta, 2004, 357, 2703; N. Reddig,
D. Pursche, M. Kloskowski, C. Slinn, S. M. Baldeau and A. Rompel,
Eur. J. Inorg. Chem., 2004, 879; S. Sarkar, A. Mondal, J. Ribas, M. G. B.
Drew, K. Pramanik and K. K. Rajak, Eur. J. Inorg. Chem., 2004, 4633;
Y. Shimazaki, S. Huth, S. Karasawa, S. Hirota, Y. Naruta and O.
Yamauchi, Inorg. Chem., 2004, 43, 7816.
25
Anomalous dispersion effects were included in Fcalc
;
the
values for Df ꢀ and Df were those of Creagh and McAuley.
ꢀꢀ
26
The values for the mass attenuation coefficients are those of
27
Creagh and Hubbell. All calculations were performed using the
28
CrystalStructure crystallographic software package except for
29
refinement, which was performed using SHELXL-97. The struc-
ture of 3 contains one molecule of acetone per asymmetric unit. In
the structures of 5 and 6, no suitable point model could be found
for a region of diffuse electron density in the asymmetric unit
that corresponded to a partial occupancy n-hexane molecule. The
30
31
Platon Squeeze procedure was applied in the solution of 5 to
recover 142 electrons per unit cell in two voids (total volume
3
˚
1
946 A ); this represents 17.75 electrons per asymmetric unit.
In 6, it was applied to recover 342 electrons per unit cell in
two voids (total volume 2032 A ); this represents 42.75 electrons
per asymmetric unit. Structural illustrations were created using
ORTEP-III for Windows.
CCDC reference numbers 677420–677423. For crystallographic
data in CIF or other electronic format see DOI: 10.1039/b802274g
7
E. Safaei, T. Weyhermuller, E. Bothe, K. Wieghardt and P. Chaudhuri,
Eur. J. Inorg. Chem., 2007, 2334; T. Weyhermuller, T. K. Paine, E.
Bothe, E. Bill and P. Chaudhuri, Inorg. Chim. Acta, 2002, 337, 344;
M. Velusamy, R. Mayilmurugan and M. Palaniandavar, Inorg. Chem.,
3
˚
3
2
2
004, 43, 6284; M. Merkel, F. K. Muller and B. Krebs, Inorg. Chim.
Acta, 2002, 337, 308; J. Hwang, K. Govindaswamy and S. A. Koch,
Chem. Commun., 1998, 1667; M. S. Shongwe, C. H. Kaschula, M. S.
Adsetts, E. W. Ainscough, A. M. Brodie and M. J. Morris, Inorg. Chem.,
2
005, 44, 3070.
Acknowledgements
8
9
M. Velusamy, M. Palaniandavar, R. S. Gopalan and G. U. Kulkarni,
Inorg. Chem., 2003, 42, 8283.
R. Viswanathan, M. Palaniandavar, T. Balasubramanian and T. P.
Muthiah, Inorg. Chem., 1998, 37, 2943.
We thank Memorial University and the NSERC of Canada for
funding (Discovery Grant to C. M. K. and Undergraduate Student
This journal is © The Royal Society of Chemistry 2008
Dalton Trans., 2008, 2991–2998 | 2997