Chemistry - A European Journal
10.1002/chem.202002164
FULL PAPER
Hickey, M.-C. J. Tremblay, S. Zaretsky, C. C. G. Scully, J. Mancuso, A.
Doucet, A. K. Yudin, E. Marsault, Chem. Eur. J., 2015, 21, 9249; (e) F.
Saito, J. W. Bode, Nat. Chem. 2016, 8, 1085; (f) Practical Medicinal
Chemistry with Macrocycles, E. Marsault and M. L. Peterson Eds, Wiley,
M. R. Anderson, L. A. Brennan, R. J. Borovoy, C. R. Cimochowski, J. A.
Faiella, A. E. Girard, D. Girard, C. Herbert, M. Manousosa, R. Mason, J.
Antibiot., 1988, 41, 1029; (c) C. Khosla, Chem. Rev., 1997, 97, 2577; (d)
D. E. Cane, C. T. Walsh, C. Khosla, Science, 1998, 282, 63; (e) S. R,
Park, A. R. Han, Y. H. Ban, Y. J. Yoo, E. J. Kim, Y. J. Yoon, Appl.
Microbiol. Biotechnol., 2010, 85, 1227; (f) Q. Li, I. B. Seiple, J. Am. Chem.
Soc., 2017, 139, 13304.
2
017; (g) S. Roesner, G. J. Saunders, I Wilkening, E. Jayawant, J. V.
Geden, P. Kerby, A. M. Dixon, R. Notman, M. Shipman, Chem. Sci.,
019, 10, 2465; (h) K. T. Mortensen, T. J. Osberger, T. A. King, H. F.
2
Sore, D. R. Spring, Chem. Rev. 2019, 119, 10288.
[13] To test whether this simplification is valid, we calculated the energies of
isomers 53 using the parent system (i.e. with NBn rather than NMe) and
all three of the calculated ΔGrel° values were within 0.7 kcal/mol of the
simplified analogues: ΔGrel° values for 53 calculated using the standard
DFT/B3LYP/6-31G* method: 53RO (imide) = 0.0 kcal/mol; 53RC (cyclol) =
10.4 kcal/mol; 53vRE (ring expanded) = 0.3 kcal/mol.
[
4]
See references 1 and 2 for various discussion on the challenges of
medium-sized ring and macrocyclisation reactions. For information on
the influence of ring size and dilution effects in cyclisation reaction, see:
(
a) G. Illuminati, L. Mandolini, Acc. Chem. Res. 1981, 14, 95; (b) J.
Fastrez, J. Phys. Chem. 1989, 93, 2635; (c) J. C. Collins, K. James, Med.
Chem. Commun. 2012, 3, 1489; (d) S. Mazur, P. Jayalekshmy, J. Am.
Chem. Soc. 1979, 101, 677; (e) C. Rosenbaum, H. Waldmann,
Tetrahedron Lett. 2001, 42, 5677; (f) A.-C. Bédard, S. K. Collins, J. Am.
Chem. Soc. 2011, 133, 19976; (g) H. Kurouchi, T. Ohwada, J. Org. Chem.
[14] Ring expansion of 58 and 60 with hydroxyacid derivative 38 was not
possible due to incompatibility of the S-containing starting material with
hydrogenolysis.
[15] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
[16] S. Grimme, S. Ehrlich, L. Goerigk, J. Comput. Chem., 2011, 32, 1456.
[17] (a) A. K. Clarke, J. M. Lynam, R. J. K. Taylor, W. P. Unsworth, ACS Catal.,
2018, 8, 6844; (b) J. T. R. Liddon, J. A. Rossi-Ashton, A. K. Clarke, J. M.
Lynam, R. J. K. Taylor, W. P. Unsworth, Synthesis, 2018, 50, 4829; (c)
R. G. Epton, A. K. Clarke, R. J. K. Taylor, W. P. Unsworth, J. M. Lynam,
Eur. J. Org. Chem., 2019, 5563.
2020, 85, 876.
[
5]
(a) C. Kitsiou, J. J. Hindes, P. I’Anson, P. Jackson, T. C. Wilson, E. K.
Daly, H. R. Felstead, P. Hearnshaw, W. P. Unsworth, Angew. Chem. Int.
Ed., 2015, 54, 15794; (b) L. G. Baud, M. A. Manning, H. L. Arkless, T. C.
Stephens, W. P. Unsworth, Chem. Eur. J., 2017, 23, 2225; (c) T. C.
Stephens, M. Lodi, A. Steer, Y. Lin, M. Gill, W. P. Unsworth, Chem. Eur.
J., 2017, 23, 13314; (d) T. C. Stephens, A. Lawer, T. French, W. P.
Unsworth, Chem. Eur. J. 2018, 24, 13947. See also reference 2k for
examples of SuRE reactions being used by another group.
[18] F. Weigend, M. Häser, H. Patzelt, R. Ahlrichs, Chem. Phys. Lett., 1998,
294, 143.
[19] (a) S. Luo, Y. Zhao, D. G. Truhlar, Phys. Chem. Chem. Phys., 2011, 13,
13683–13689; (b) Y. Minekov, H. Wang, Z. Wang, S. M. Sarathy, L.
Cavallo, J. Chem. Theory Comput.. 2017, 13, 3537−3560; (c) P. Stewart,
L. Rodriquez, D. H. Ess, J. Phys. Org. Chem., 2011, 24, 1222–1228; (d)
H. Valdes, K. Pluháčková, M. Pitonák, J. Řezáč, P. Hobza, Phys. Chem.
Chem. Phys., 2008, 10, 2747–2757; (e) N. Mardirossian, M. Head-
Gordon, J. Chem. Theory Comput., 2016, 12, 4303−4325.
[
6]
The DFT/B3LYP/6-31G* method was chosen as it is well known,
implemented across the vast majority of computational chemistry
packages, and it performs well in various settings, including in our earlier
work (reference 5d).
[
[
7]
8]
B3LYP, BP86, PBE0, M06 and M06-2X functionals and 6-31G*, SV(P)
and def2-TZVPP basis sets have all been evaluated in this study. See
Tables 1 and 2 and ESI and the associated discussion for details.
The energy calculations, final optimisations and frequency calculations
were all done in a vacuum. In our previous study (reference 5d) all the
calculations were run using a solvated model system (non-polar solvent)
as well as in vacuum, and there was little difference in the free energy
values obtained between the two methods, therefore it was decided to
use vacuum calculations in this study, given that they are less demanding
computationally.
[20] See ESI for computational details.
[21] (a) V. Stepanić, S. Koštrun, I. Malnar, M. Hlevnjak, K. Butković, Ir. Ćaleta,
M. Dukši, G. Kragol, O. Makaruha-Stegić, L. Mikac, J. Ralić, I. Tatić, B.
Tavčar, K. Valko, S. Zulfikari, Vesna Munić, J. Med. Chem., 2011, 54,
719; (b) S. D. Appavoo, S. Huh, D. B. Diaz, A. K. Yudin, Chem. Rev.
2019, 119, 9724; (c) I. V. Smolyar, A. K. Yudin, V. G. Nenajdenko, Chem.
Rev. 2019, 119, 10032.
[
9]
For medium-sized rings and macrocycles in medicinal chemistry, see: (a)
E. M. Driggers, S. P. Hale, J. Lee, N. K. Terrett, Nat. Rev. Drug Discov.
2008, 7, 608; (b) E. Marsault, M. L. Peterson, J. Med. Chem. 2011, 54,
1961; (c) F. Kopp, C. F. Stratton, L. B. Akella, D. S. Tan, Nat. Chem. Bio.
2012, 8, 358; (d) R. A. Bauer, T. A. Wenderski, D. S. Tan, Nat. Chem.
Bio. 2013, 9, 21; (e) F. Giordanetto, J. Kihlberg, J. Med. Chem. 2014, 57,
78; (f) A. Grossmann, S. Bartlett, M. Janecek, J. T. Hodgkinson, D. R.
2
Spring, Angew. Chem. Int. Ed. 2014, 53, 13093; (g) A. K. Yudin, Chem.
Sci. 2015, 6, 30; (h) I. B. Seiple, Z. Zhang, P. Jakubec, A. Langlois-
Mercier, P. M. Wright, D. T. Hog, K. Yabu, S. R. Allu, T. Fukuzaki, P. N.
Carlsen, Y. Kitamura, X. Zhou, M. L. Condakes, F. T. Szczypiński, W. D.
Green, A. G. Myers, Nature, 2016, 533, 338; (i) S. Collins, S. Bartlett, F.
Nie, H. F. Sore, D. R. Spring, Synthesis 2016, 1457; (j) S. Javed, M.
Bodugam, J. Torres, A. Ganguly, P. Hanson, Chem. Eur. J. 2016, 22,
6755; (k) M. Dow, F. Marchetti, K. A. Abrahams, L. Vaz, G. S. Besra, S.
Warriner, A. Nelson, Chem. Eur. J. 2017, 23, 7207; (l) W. Xu, Y. H. Lau,
G. Fischer, Y. S. Tan, A. Chattopadhyay, M. de la Roche, M. Hyvönen,
C. Verma, D. R. Spring, L. S. Itzhaki, J. Am. Chem. Soc. 2017, 139, 2245.
[
10] (a) S. B. Y. Shin, B. Yoo, L. J. Todaro, K. Kirshenbaum, J. Am. Chem.
Soc. 2007, 129, 3218; (b) A. M. Webster, S. L. Cobb, Tetrahedron Lett.
2017, 58, 1010; (c) A. M. Webster, S. L. Cobb, Chem. Eur. J., 2018, 24,
7560.
[
[
11] ΔGrel° values for 27v calculated using the standard DFT/B3LYP/6-
1G*method (see SI for full details): 27vRO (imide) = 8.1 kcal/mol; 27vRC
cyclol) = 16.7 kcal/mol; 27vRE (ring expanded) = 0.0 kcal/mol
3
(
12] (a) J. M. Mcguire, R. I. Bunch, R. C. Anderson, H. E. Boaz, E. H. Flynn,
H. M. Powell, J. W. Smith, Antibiot. Chemother., 1952, 2, 281; (b) G. M.
Bright, A. A. Nagel, J. Bordner, K. A. Desai, J. N. Dibrino, J. Nowakowska,
L. Vincent, R. M. Watrous, F. C. Sciavolino, A. R. English, J. A. Retsema,
1
0
This article is protected by copyright. All rights reserved.