Page 5 of 5
Jou Pr nl e aa ls oe fd Mo an to et r ai ad lj su s Ct hm ea mr g ii sn ts ry A
DOI: 10.1039/C5TA03213J
Journal Name
ARTICLE
hypercross-linking
various
hydroxyl-functionalized 12 (a) S S. Shivatare, S-H. Chang, T-I. Tsai, C-T. Ren, H-Y.
Chuang, L. Hsu, C-W. Lin, S-T. Li, C-Y. Wu, C-H. Wong, J. Am.
carbohydrate monomers with the cross-linker FDA. We have
also explored and demonstrated that several factors, including
quantity and reactivity of hydroxyl groups and the structure of
Chem. Soc., 2013, 135, 15382; (b) L. Li, Y. Xu, I. Milligan, L. Fu,
E. A. Franckowiak, W. Du, Angew. Chem. Int. Ed., 2013, 52
3699.
,
1
the carbohydrate monomers all contribute to the CO
2
13 J. Wei, L. Zheng, X. Lv, Y. Bi, W. Chen, W. Zhang, Y. Shi, L.
Zhao, X. Sun, F. Wang, S. Cheng, J. Yan, W. Liu, X. Jiang, G. F.
Gao, X. Li, ACS Nano, 2014, 5, 4600.
adsorption. In general, these carbohydrate-based polymers
show robust microporous structures, good thermal stability,
1
4 J. J. Gassensmith, H. Furukawa, R. A. Smaldone, R. S. Forgan,
Y. Y. Botros, O. M. Yaghi, J. F. Stoddart, J. Am. Chem. Soc.,
high surface area, respectable CO
2
uptake and competitive
. Moreover, the green
adsorption selectivity for CO over N
2
2
2
011, 133, 15312.
chemistry nature of these carbohydrate-based polymers 15 A. Thomas, Angew. Chem. Int. Ed., 2010, 49, 8328.
makes them amenable to solve environmental issues like CO
2
16 They proposed it based on the well-established principle that
reactivity of primary hydroxyl groups is higher than
secondary hydroxyl groups.
absorption, and we hope these promising microporous
polymers will find broad applications in carbon capture.
1
7 (a) R. A. Smaldone, R. S. Forgan, H. Furukawa, J. J.
Gassensmith, A. M. Z. Slawin, O. M. Yaghi, J. F Stoddart,
Angew. Chem. Int. Ed., 2010, 49, 8630; (b) R. S. Forgan, R. A.
Smaldone, J. J. Gassensmith, H. Furukawa, D. B. Cordes, Q. Li,
C. E. Wilmer, Y. Y. Botros, R. Q. Snurr, A. M. Z. Slawin, J. F.
Stoddart, J. Am. Chem. Soc., 2012, 134, 406; (c) D. Wu, J. J.
Gassensmith, D. Gouvea, S. Ushakov, J. F. Stoddart, A.
Navrotsky, J. Am. Chem. Soc., 2013, 135, 6790; (d) J. J.
Gassensmith, J. Y. Kim, J. M. Holcroft, O. K. Farha, J. F.
Stoddart, J. T. Hupp, N. C. Jeong, J. Am. Chem. Soc., 2014,
Acknowledgements
HYL and HLL thank the National Basic Research Program of
China (2013CB733501), the National Natural Science
Foundation of China (No. 91334203), the 111 Project of China
(No. B08021) and the Fundamental Research Funds for the
Central Universities of China. This work was also supported by
the U.S. Department of Energy, Office of Science, Basic Energy
Sciences, Chemical Sciences, Geosciences, and Biosciences
Division.
1
36, 8277.
1
8 (a) G. J. L. Bernardes, E. J. Grayson, S. Thompson, J. M.
Chalker, J. C. Errey, F. E. Oualid, T. D. W. Claridge, B. G. Davis,
Angew. Chem. Int. Ed., 2008, 47, 2244; (b) E. Sasaki, C-I. Lin,
K-Y. Lin, H-W. Liu, J. Am. Chem. Soc., 2012, 134, 17432.
9 B. Li, R. Gong, W. Wang, X. Huang, W. Zhang, H. Li, C. Hu, B.
Tan, Macromolecules, 2011, 44, 2410.
1
2
Notes and references
0 Y. Zhao, D. G. Truhlar, Theor. Chem. Acc., 2008, 120, 215.
1
M. Abolhasani, A. Gunther, E. Kumacheva, Angew. Chem. Int. 21 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Ed., 2014, 53, 7992.
D. W. Keith, Science, 2009, 325, 16544.
(a) R. Dawson, D. J. Adams, A. I. Cooper, Chem. Sci., 2011,
1173; (b) J. Wang, L. Huang, R. Yang, Z. Zhang, J. Wu, Y. Gao,
Q. Wang, D. O'Hare, Z. Zhong, Energy Environ. Sci., 2014,
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci,
G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P.
Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L.
Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J.
Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery, J. E. Jr. Peralta, F.
Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V.
N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K.
Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi,
M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W.
Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.
Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D.
Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D.
J. Fox, Gaussian, Inc., Wallingford CT, 2010.
2
3
2
,
7,
3
478.
4
(a) S. Fischer, J. Schmidt, P. Strauch, A. Thomas, Angew.
Chem. Int. Ed., 2013, 52, 12174; (b) R. Dawson, E. Stockel, J.
R. Holst, D. J. Adams, A. I. Cooper, Energy Environ Sci., 2011,
4, 4239; (c) X. Zhu, S. M. Mahurin, S-H. An, C-L. Do-Thanh, C.
Tian, Y. Li, L. W. Gill, E. W. Hagaman, Z. Bian, J-H. Zhou, J. Hu,
H. Liu, S. Dai, Chem. Commun., 2014, 50, 7933; (d) A. P.
Katsoulidis, M. G. Kanatzidis, Chem. Mater., 2011, 23, 1818;
(
3
e) S. Xu, Y. Luo, B. Tan, Macromol. Rapid Commun., 2013,
, 471.
M. R. Liebl, J. Senker, Chem. Mater., 2013, 25, 970.
4
5
6
(a) R. Dawson, L. A. Stevens, T. C. Drage, C. E. Snape, M. W. 22 S. F. Boys, F. Bernardi, Mol. Phys., 1970, 19, 553.
Smith, D. J. Adams, A. I. Cooper, J. Am. Chem. Soc., 2012,
134, 10741; (b) Y. Luo, B. Li, W. Wang, K. Wu, B. Tan, Adv.
Mater., 2012, 24, 5703; (c) S. Xu, Y. Luo, B. Tan, Macromol.
Rapid Commun., 2013, 34, 471; (d) S. Yao, X. Yang, M. Yu, Y.
Zhang, J. Jiang, J. Mater. Chem. A., 2014, 2, 8054.
7
D. Wu, F. Xu, B. Sun, R. Fu, H. He, K. Matyjaszewski, Chem.
Rev., 2012, 112, 3959.
8
9
X. Wang, O. Ramstrom, M. Yan, Adv. Mater., 2010, 22, 1946.
G. Mangiante, P. Alcouffe, B. Burdin, M. Gaborieau, E. Zeno,
M. P-Conil, J. Bernard, A. Charlot, E. Fleury,
Biomacromolecules, 2013, 14, 254.
1
1
0 A. Varki, R. D. Cummings, J. D. Esko, H. H. Freeze, P. Stanley,
C. R. Bertozzi, G. W. Hart, M. E. Etzler, Essentials of
Glycobiology, Cold Spring Harbor Laboratory Press, Cold
Spring Harbor, NY, 2nd edn, 2009.
1 F. Zhang, C. Liang, X. Wu, H. Li, Angew. Chem. Int. Ed., 2014,
53, 8498.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins