M. Lehnig, K. Schürmann
FULL PAPER
[5]
[6]
Preparation of Tetranitromethane-15N : The compound was syn-
thesized as described[30]. NaNO3 with 10 atom% 15N was used (Iso-
tec Inc.). Ϫ 15N NMR (CD3CN): δ ϭ Ϫ38.6 (s). Ϫ 13C NMR
(CD3CN): δ ϭ 115.4 (q). Ϫ Raman: ν˜ ϭ 1615 cmϪ1, 1649 (νa NO2);
1341, 1247 (νs NO2); 360, 408, 417, 608 ( δ NO2).
Thermal 15N-CIDNP Experiments: After putting the reactants
into the 10-mm NMR tubes, they were quickly transferred into the
probe head of the 15N-NMR spectrometer and locked within 2 min
(internal lock: D2O). 15N-NMR spectra were then taken every
3Ϫ12 min using single pulses with a pulse angle of 90° until the
reactions were completed. 15N-NMR relaxation times T1 were then
determined applying πϪπ/2 pulse sequences. The repetition times
were long enough to avoid saturation. Shorter pulses have also been
applied. They give identical results, but have not been used for the
quantitative measurements, as the signal-to-noise ratio of Imax and
J. H. Ridd, Chem. Soc. Rev. 1991, 20, 149Ϫ165.
L. Eberson, F. Radner, Acta Chem. Scand. B, 1984, 38,
861Ϫ870; T. Lund, L. Eberson, J. Chem. Soc., Perkin Trans. 2,
1997, 1435Ϫ1443.
[7]
[8]
S. Sankararaman, W. A. Haney, J. K. Kochi, J. Am. Chem. Soc.
1987, 109, 5235Ϫ5249.
L. Eberson, M. P. Hartshorn, F. Radner, J. O. Svensson, Acta
Chem. Scand. 1996, 50, 885Ϫ898; C. P. Butts, L. Eberson, M.
Hartshorn, O. Persson, Acta Chem. Scand. 1997, 51, 718Ϫ732;
C. P. Butts, L. Eberson, M. P. Hartshorn, O. Persson, R. S.
Thompson, W. T. Robinson, Acta Chem. Scand. 1997, 51,
1066Ϫ1077.
[9]
H. Martinsen, Z. Phys. Chem. 1904, 50, 385Ϫ435.
J. C. Giffney, J. H. Ridd, J. Chem. Soc., Perkin Trans. 2, 1979,
618Ϫ623.
[10]
[11]
[12]
D. L. H. Williams, Nitrosation, Cambridge University Press,
Cambridge 1988 ; B. C. Challis, A. J. Lawson, J. Chem. Soc.
(B) 1971, 770Ϫ775; B. C. Challis, R. J. Higgins, A. J. Lawson,
J. Chem. Soc., Perkin Trans. 2, 1972, 1831Ϫ1836.
L. Eberson, M. P. Hartshorn, O. Persson, Angew. Chem. Int.
Ed. Engl. 1995, 34, 2268Ϫ2269; L. Eberson, O. Persson, F.
Radner, M. P. Hartshorn, Res. Chem. Intermed. 1996, 22,
799Ϫ820.
Ϫ
Io is somewhat smaller. The identification of 2a, 2b, 3 and NO3
was performed by comparing 13C-, 14N- and 15N-NMR data with
those of authentic material and the literature[25]. Product ratios
were taken from 15N-NMR and 13C-NMR spectra. The nitric acid
used was 9.4 in H2O and labelled with 60.3 atom% 15N (Isotec
Inc.). NaNO2 was labelled with 99.3 atom% 15N (Isotec Inc.). All
the compounds and solvents were commercial and used without
[13]
[14]
[15]
[16]
S. Seltzer, E. Lam, L. Packer, J. Am. Chem. Soc. 1982, 104,
6470Ϫ6471.
D. S. Ross, G. P. Hum , W. G. Blucher, J. Chem. Soc., Chem.
Comm. 1980, 532Ϫ534.
F. Radner, A. Wall, M. Loncar, Acta Chem. Scand. 1990, 44,
152Ϫ157.
further purification. E was determined using Eq. 10[18]
.
R. G. Coombes, J. G. Golding , P. Hadjigeourgiou, J. Chem.
Soc., Perkin Trans. 2, 1979, 1451Ϫ1459.
E ϭ Σ Ii∆ t(i,iϩ1)/IoT1
(10)
[17]
[18]
J. B. Pedersen, J. Chem. Phys. 1977, 67, 4079Ϫ4102.
M. Lehnig, J. Chem. Soc., Perkin Trans. 2, 1996, 1943Ϫ1948;
M. Lehnig, Acta Chem. Scand. 1997, 51, 211Ϫ213; M. Lehnig,
Chem. Phys. 1975, 8, 419Ϫ424; 1981, 54, 323Ϫ329.
Landolt-Börnstein, Neue Serie Bd. 9, 17, Magnetische Eigen-
schaften freier Radikale, Ed. H. Fischer, K.-H. Hellwege,
Springer-Verlag Berlin, Heidelberg, New York, 1987.
A. W. Hofmann, Ann. Chem. Pharm. 1850, LXXV, 356Ϫ368.
F. Arnall, J. Chem. Soc. 1924, 811Ϫ816.
Ii is the intensity of the ith measurement, ∆t(i,iϩ1) the time inter-
val between the ith and the (iϩ1)th measurement. The summation
was carried out as long as the CIDNP effects could be observed.
For improving the signal-to-noise ratio of Io, several 90° pulses with
a delay time of 10 min were used in some cases.
[19]
[20]
[21]
[22]
[23]
[24]
J. L. Bridge, Liebigs Ann. Chem. 1893, 277, 79Ϫ104.
A. Baeyer, H. Caro, Ber. Dtsch. Chem. Ges. 1874, 7, 963Ϫ968.
B. D. Beake, J. Constantine, R. B. Moodie, J. Chem. Soc., Perkin
Trans. 2 1992, 1653Ϫ1654.
[1]
G. A. Olah, R. Malhotra, S. C. Narang, Nitration, Verlag
Chemie, New York 1989; K. Schofield, Aromatic Nitration,
Cambridge University Press, Cambridge 1980.
[2]
[25]
T. M. Bockman, J. K. Kochi, J. Phys. Org. Chem. 1994, 7,
M. Witanowski, L. Stefaniak, G. A. Webb, Ann. Rep. NMR
Spectrosc. 1993, 25, 1, and references cited therein.
R. Kaptein, Chem. Comm. 1971, 732Ϫ733.
325Ϫ351; L. Eberson, M. P. Hartshorn, F. Radner, Advances in
Carbocation Chemistry, Ed. J. M. Coxon, JAI Press, London
1995, vol. 2, pp 207Ϫ263.
[26]
[27]
M. Schmittel, A.Burghart, Angew. Chem. 1997, 109,
2658Ϫ2699.
[3]
C. A. Bunton, E. D. Hughes, G. J. Minkoff , R. I. Reed, Nature
[28]
(London) 1946, 158, 514Ϫ515; E. D. Hughes, C. K. Ingold, R.
I. Reed, J. Chem. Soc. 1950, 2400Ϫ2440; C. A. Bunton, E. D.
Hughes, C. K. Ingold, D. I. H. Jacobs, M. H. Jones, G. J. Min-
koff, R. I. Reed, J. Chem. Soc. 1950, 2628Ϫ2656.
M. Lehnig, H. Fischer, Z. Naturforsch., Teil A, 1970, 25,
1963Ϫ1969; 1972, 27, 1300Ϫ1307.
[29]
[30]
R. R. Ernst, W. A. Anderson, Rev. Sci. Instrum. 1966, 37, 93.
W. Skawinski, J. Flisak, A. C. Chung, F. Jordan, R. Mendel-
sohn, J. Labelled Compds. 1990, 28, 1179Ϫ1183.
[97295]
[4]
J. Kenner, Nature (London) 1945, 156, 369Ϫ370; C. L. Perrin,
J. Am. Chem. Soc. 1977, 99, 5516Ϫ5518.
918
Eur. J. Org. Chem. 1998, 913Ϫ918