2 A. B. Dounay and L. E. Overman, Chem. Rev., 2003, 103, 2945–2963;
M. Shibasaki and E. M. Vogl, in Comprehensive Asymmetric Catalysis,
ed. E. N. Jacobsen, A. Pfaltz and H. Yamamoto, 1999, vol. 1, ch. 14,
pp. 457–487; M. Shibasaki, E. M. Vogl and T. Ohshima,
in Comprehensive Asymmetric Catalysis, ed. E. N. Jacobsen,
A. Pfaltz and H. Yamamoto, 2004, Supplement 1, pp. 73–81.
3 Only those alkyl halides with a halide atom at a bridgehead position,
such as 1-bromoadamantane, have been successfully employed in Heck
reactions, see: S. Bra¨se, B. Waegell and A. de Meijere, Synthesis, 1998,
148–152.
Thus, a new method for the one-pot substitution of vinylic
hydrogen of enones was established{ by using higher-order dialkyl
cyanocuprates and 1. The present method can be regarded as
an alternative to Heck-type alkylation,4,5 and can be employed
for synthesizing
conditions.§
a variety of b-alkyl enones under mild
Jun-ichi Matsuo* and Yayoi Aizawa
Center for Basic Research, The Kitasato Institute, 1-15-1-S105,
Kitasato, Sagamihara, Kanagawa 228-8555, Japan.
E-mail: matuo@lisci.kitasato-u.ac.jp; Fax: +81-42-778-9931;
Tel: +81-42-778-9931
4 S. A. Lebedev, V. S. Lopatina, E. S. Petrov and I. P. Beletskaya,
J. Organomet. Chem., 1988, 344, 253–259.
5 B. P. Branchaud, M. S. Meier and Y. Choi, Tetrahedron Lett., 1988, 29,
167–170; B. P. Branchaud and W. D. Detlefsen, Tetrahedron Lett., 1991,
32, 6273–6276; Y. Ikeda, T. Nakamura, H. Yorimitsu and K. Oshima,
J. Am. Chem. Soc., 2002, 124, 6514–6515.
Notes and references
6 E. Piers and I. Nagakura, J. Org. Chem., 1975, 40, 2694–2696; E. Piers,
K. F. Cheng and I. Nagakura, Can. J. Chem., 1982, 60, 1256–1263.
7 G. Stork and R. L. Danheiser, J. Org. Chem., 1973, 38, 1775–1776.
8 As an another example: A. P. Kozikowski and S. H. Jung, J. Org.
Chem., 1986, 51, 3400–3402.
9 H. J. Reich, J. M. Renga and I. L. Reich, J. Am. Chem. Soc., 1975, 97,
5434–5447.
10 K. C. Nicolaou, D. L. F. Gray, T. Montagnon and S. T. Harrison,
Angew. Chem. Int. Ed., 2002, 41, 996–1000.
{ Typical experimental procedure (Table 2, Entry 10) is as follows: to a
stirred solution of CuCN (29.9 mg, 0.33 mmol) in dry ether (2 mL) was
added a solution of methyllithium in diethyl ether (0.98 N, 0.63 mL,
0.62 mmol) at 278 uC, and the mixture was stirred for 10 min at 0 uC.
Then, a solution of 4 (49.6 mg, 0.28 mmol) in ether (1.5 mL) was added at
278 uC, and the reaction mixture was stirred for 20 min at 223 uC. During
this period, the bright yellow color of the mixture faded out. Next, a
solution of 1 (183 mg, 0.85 mmol) in ether (1 mL) was added at 278 uC,
and the mixture was stirred for 30 min. The reaction was quenched by
adding 10% NH4OH in saturated NH4Cl (5 mL) at 278 uC, and the
resulting mixture was extracted with ether three times. The combined
extracts were washed with water and brine, dried over anhydrous Na2SO4,
filtered and concentrated. The crude product was purified by silica gel
column chromatography (hexanes–ether) to afford 3-methyl-4-phenyl-2-
cyclohexen-1-one (5d) (48.8 mg, 0.26 mmol, 94%) as a colorless oil. 1H
NMR (500 MHz, CDCl3): d 7.35–7.15 (m, 5H), 6.09 (s, 1H), 3.57 (t, J 5
4.6 Hz, 1H), 2.40–2.25 (m 3H), 2.10–2.00 (m, 1H), 1.81 (s, 3H). 13C NMR
(125 MHz, CDCl3): d 199.4, 162.5, 140.5, 128.7, 128.4, 128.0, 127.0, 46.4,
33.9, 31.4, 23.4.
11 B. B. Snider, D. J. Rodini and J. van Straten, J. Am. Chem. Soc., 1980,
102, 5872–5880.
12 Review: J. Matsuo, J. Synth. Org. Chem. Jpn., 2004, 62, 574–583.
13 J. Matsuo, D. Iida, K. Tatani and T. Mukaiyama, Bull. Chem. Soc.
Jpn., 2002, 75, 223–234; J. Matsuo, H. Kitagawa, D. Iida and
T. Mukaiyama, Chem. Lett., 2001, 150–151; T. Mukaiyama,
J. Matsuo and M. Yanagisawa, Chem. Lett., 2000, 1072–1073.
14 J. Matsuo, A. Kawana, Y. Fukuda and T. Mukaiyama, Chem. Lett.,
2001, 712–713; T. Mukaiyama, A. Kawana, Y. Fukuda and J. Matsuo,
Chem. Lett., 2001, 390–391.
15 J. Matsuo, T. Shibata, H. Kitagawa and T. Mukaiyama, ARKIVOC,
2001, 58–65.
16 J. Matsuo and Y. Aizawa, Tetrahedron Lett., 2005, 46, 407–410;
T. Mukaiyama, J. Matsuo and H. Kitagawa, Chem. Lett., 2000,
1250–1251.
§ The authors thank Professor Teruaki Mukaiyama (The Kitasato
¯
Institute) and Professor Satoshi Omura (The Kitasato Institute) for their
kind and generous support. The present work was partially supported by
Grant-in-Aids for Scientific Research from the Ministry of Education,
Culture, Sports, Science, and Technology of Japan. We thank the Fujisawa
Foundation for funding of this research.
17 K. C. Nicolaou, T. V. Koftis, S. Vyskocil, G. Petrovic, T. Ling, Y. M.
A. Yamada, W. Tang and M. O. Frederick, Angew. Chem. Int. Ed.,
2004, 43, 4318–4324; M. Ishizaki, Y. Niimi and O. Hoshino,
Tetrahedron Lett., 2003, 44, 6029–6031.
1 T. Mizoroki, K. Mori and A. Ozaki, Bull. Chem. Soc. Jpn., 1971, 44,
581; R. F. Heck, Org. React., 1982, 27, 345–390; R. F. Heck, Acc.
Chem. Res., 1979, 12, 146–151; R. F. Heck, in Comprehensive Organic
Synthesis, ed. B. M. Trost and I. Fleming, Pergamon, Oxford, 1991,
vol. 4, pp. 833–863.
18 B. H. Lipshutz, M. Koerner and D. A. Parker, Tetrahedron Lett., 1987,
28, 945–948.
19 B. H. Lipshutz, P. Fatheree, W. Hagen and K. L. Stevens, Tetrahedron
Lett., 1992, 33, 1041–1044.
20 D. Seyferth and H. M. Cohen, J. Organomet. Chem., 1963, 1, 15–21.
This journal is ß The Royal Society of Chemistry 2005
Chem. Commun., 2005, 2399–2401 | 2401