Communication
ChemComm
6 B. J. A. van Weerdenburg, S. Gloggler, N. Eshuis, A. H. J. Engwerda,
J. M. M. Smits, R. de Gelder, S. Appelt, S. S. Wymenga, M. Tessari,
M. C. Feiters, B. Blumich and F. P. J. T. Rutjes, Chem. Commun.,
2013, 49, 7388.
7 M. J. Cowley, R. W. Adams, K. D. Atkinson, M. C. R. Cockett, S. B.
Duckett, G. G. R. Green, J. A. B. Lohman, R. Kerssebaum, D. Kilgour
and R. E. Mewis, J. Am. Chem. Soc., 2011, 133, 6134.
8 J.-B. Hoevener, N. Schwaderlapp, R. Borowiak, T. Lickert, S. B. Duckett,
R. E. Mewis, R. W. Adams, M. J. Burns, L. A. R. Highton, G. G. R. Green,
A. Olaru, J. Hennig and D. von Elverfeldtt, Anal. Chem., 2014, 86, 1767.
9 R. E. Mewis, K. D. Atkinson, M. J. Cowley, S. B. Duckett, G. G. R. Green,
R. A. Green, L. A. R. Highton, D. Kilgour, L. S. Lloyd, J. A. B. Lohman and
D. C. Williamson, Magn. Reson. Chem., 2014, 52, 358.
10 M. L. Truong, F. Shi, P. He, B. Yuan, K. N. Plunkett, A. M. Coffey,
R. V. Shchepin, D. A. Barskiy, K. V. Kovtunov, I. V. Koptyug, K. W.
Waddell, B. M. Goodson and E. Y. Chekmenev, J. Phys. Chem. B,
2014, 118, 13882.
11 H. Zeng, J. Xu, J. Gillen, M. T. McMahon, D. Artemov, J.-M. Tyburn,
J. A. B. Lohman, R. E. Mewis, K. D. Atkinson, G. G. R. Green,
S. B. Duckett and P. C. M. van Zijl, J. Magn. Reson., 2013, 237, 73.
12 E. B. Du¨cker, L. T. Kuhn, K. Mu¨nnemann and C. Griesinger, J. Magn.
Reson., 2012, 214, 159.
13 A. N. Pravdivtsev, A. V. Yurkovskaya, H. Zimmermann, H.-M. Vieth
and K. L. Ivanov, RSC Adv., 2015, 5, 63615.
provide, the resulting time savings are substantial in all solvents.
For comparison purposes, the site specific enhancement values
for the substrates pyridine, nicotinaldehyde and nicotine are
summarised in Table 1. The performance of 1 as a SABRE catalyst
for pyridine like substrates has therefore been established.
It is known that the amount of signal enhancement observed
1
in the H NMR spectrum of a substrate under SABRE is signifi-
cantly affected by the ligand exchange rates, as previously
explained by Green et al.34 For comparison, [Ir(H)2(IMes)(py)3]Cl,
is commonly used as the catalyst benchmark for SABRE and its
pyridine dissociation rate32 was found to be 23 sÀ1. While the
ligand dissociation rates for 3 and 6 are much lower, they still
achieve good hyperpolarisation levels. In fact, these data show
that one pyridine substrate trans to hydride in CD2Cl2 or C6D6 is
more efficient at receiving SABRE than the two equivalent pyridine
ligands of 6 in CD3OD. Furthermore, the concept of an active
solvent responsive catalyst is illustrated.
In summary, the iridium precatalyst Ir(kC,O-L1)(COD), 1 con-
taining a phenolate substituted NHC has been synthesised and
shown to act as an efficient SABRE catalyst precursor. The active
catalytic species is solvent dependent. Complex 1 contains an Ir–O
bond which is affected by solvent polarity and proton availability;
in non-polar C6D6 and polar aprotic CD2Cl2, this bond is strong
and substitution resistant with 1 forming Ir(kC,O-L1)(H)2(py)2 (3)
on reaction with H2 and pyridine. In contrast, on changing to polar
protic methanol, the Ir–O bond becomes labile and the phenolate
easily dissociates from the iridium centre, such that zwitterionic
[Ir(kC,OÀ-L1)(H)2(py)3]+ (6) forms. 6 is directly analogous to the
efficient SABRE catalyst [Ir(H)2(IMes)(py)3]Cl which performs well
in CD3OD but has lower activity in non-polar CD2Cl2 and C6D6.
Both 3 and 6 undergo pyridine and H2 exchange thereby enabling
them to act as SABRE catalysts. Whilst 6 works well in CD3OD,
catalyst neutrality in the non-polar solvents CD2Cl2 and C6D6
results in the formation of 3 which is highly active for SABRE
catalysis. This study therefore shows that catalyst design and
control can lead to improved magnetisation transfer in a range
of solvents, a requirement for future studies that seek to identify
low concentration analytes35–37 and to produce hyperpolarised
MRI contrast agents.
14 L. T. Kuhn, U. Bommerich and J. Bargon, J. Phys. Chem. A, 2006, 110, 3521.
15 V. V. Zhivonitko, I. V. Skovpin and I. V. Koptyug, Chem. Commun.,
2015, 51, 2506.
16 M. Fekete, O. Bayfield, S. B. Duckett, S. Hart, R. E. Mewis, N. Pridmore,
P. J. Rayner and A. Whitwood, Inorg. Chem., 2013, 52, 13453.
17 A. J. Ruddlesden, R. E. Mewis, G. G. R. Green, A. C. Whitwood and
S. B. Duckett, Organometallics, 2015, 34, 2997.
18 V. L. Schuster, Y. Chi, A. S. Wasmuth and R. S. Pottorf, G. L. Olson
and W. I. P. Organisation, WO2011/37610 A1, Albert Einstein College
Of Medicine Of Yeshiva University, US, 2011.
19 G. Sagrera and G. Seoane, Synthesis, 2009, 4190.
20 R. V. Somu, H. Boshoff, C. Qiao, E. M. Bennett, C. E. Barry and
C. C. Aldrich, J. Med. Chem., 2005, 49, 31.
21 G. Occhipinti, V. R. Jensen, K. W. Tornroos, N. A. Froystein and
H. R. Bjorsvik, Tetrahedron, 2009, 65, 7186.
22 J. L. Herde, J. C. Lambert and C. V. Senoff and M. A. Cushing, Inorg.
Syn., John Wiley & Sons, Inc., 2007.
23 M. V. Campian, R. N. Perutz, B. Procacci, R. J. Thatcher, O. Torres
and A. C. Whitwood, J. Am. Chem. Soc., 2012, 134, 3480.
24 M. C. Nicasio, R. N. Perutz and A. Tekkaya, Organometallics, 1998, 17, 5557.
25 L. Cronin, M. C. Nicasio, R. N. Perutz, R. G. Peters, D. M. Roddick
and M. K. Whittlesey, J. Am. Chem. Soc., 1995, 117, 10047.
26 C. Hall, W. D. Jones, R. J. Mawby, R. Osman, R. N. Perutz and
M. K. Whittlesey, J. Am. Chem. Soc., 1992, 114, 7425.
27 G. L. Geoffroy, H. Isci, J. Litrenti and W. R. Mason, Inorg. Chem.,
1977, 16, 1950.
28 R. Brady, B. R. Flynn, G. L. Geoffroy, H. B. Gray, J. Peone and
L. Vaska, Inorg. Chem., 1976, 15, 1485.
29 G. L. Geoffroy, G. S. Hammond and H. B. Gray, J. Am. Chem. Soc.,
1975, 97, 3933.
We acknowledge Bruker Biospin and the EPSRC for a student-
ship (1359398) and the Wellcome Trust and Wolfson Foundation
(092506 and 098335) for their generous funding. We thank Dr
Jason Lynam, Prof. Gary Green and Dr Ryan Mewis for helpful
comments.
30 H. M. Peng, R. D. Webster and X. Li, Organometallics, 2008, 27, 4484.
31 K. Stott, J. Keeler, Q. N. Van and A. J. Shaka, J. Magn. Reson., 1997, 125, 302.
32 L. S. Lloyd, A. Asghar, M. J. Burns, A. Charlton, S. Coombes, M. J.
Cowley, G. J. Dear, S. B. Duckett, G. R. Genov, G. G. R. Green,
L. A. R. Highton, A. J. J. Hooper, M. Khan, I. G. Khazal, R. J. Lewis,
R. E. Mewis, A. D. Roberts and A. J. Ruddlesden, Catal. Sci. Technol.,
2014, 4, 3544.
References
1 T. C. Eisenschmid, R. U. Kirss, P. P. Deutsch, S. I. Hommeltoft,
33 D. A. Barskiy, A. N. Pravdivtsev, K. L. Ivanov, K. V. Kovtunov and
I. V. Koptyug, Phys. Chem. Chem. Phys., 2016, 18, 89.
R. Eisenberg, J. Bargon, R. G. Lawler and A. L. Balch, J. Am. Chem. Soc., 34 R. A. Green, R. W. Adams, S. B. Duckett, R. E. Mewis, D. C. Williamson
1987, 109, 8089. and G. G. R. Green, Prog. Nucl. Magn. Reson. Spectrosc., 2012, 67, 1.
2 C. R. Bowers and D. P. Weitekamp, J. Am. Chem. Soc., 1987, 109, 5541. 35 N. Eshuis, N. Hermkens, B. J. A. van Weerdenburg, M. C. Feiters,
3 R. W. Adams, S. B. Duckett, R. A. Green, D. C. Williamson and
G. G. R. Green, J. Chem. Phys., 2009, 131, 194505.
F. P. J. T. Rutjes, S. S. Wijmenga and M. Tessari, J. Am. Chem. Soc.,
2014, 136, 2695.
4 K. D. Atkinson, M. J. Cowley, S. B. Duckett, P. I. P. Elliott, 36 N. Eshuis, R. L. E. G. Aspers, B. J. A. van Weerdenburg, M. C. Feiters,
G. G. R. Green, J. Lopez-Serrano, I. G. Khazal and A. C. Whitwood,
Inorg. Chem., 2009, 48, 663.
5 K. D. Atkinson, M. J. Cowley, P. I. P. Elliott, S. B. Duckett, G. G. R.
Green, J. Lopez-Serrano and A. C. Whitwood, J. Am. Chem. Soc., 2009,
131, 13362.
F. P. J. T. Rutjes, S. S. Wijmenga and M. Tessari, Angew. Chem., Int.
Ed., 2015, 54, 14527.
37 N. Eshuis, B. J. A. van Weerdenburg, M. C. Feiters, F. P. J. T. Rutjes,
S. S. Wijmenga and M. Tessari, Angew. Chem., Int. Ed., 2015,
54, 1481.
Chem. Commun.
This journal is ©The Royal Society of Chemistry 2016