ChemSusChem
10.1002/cssc.201900925
FULL PAPER
flasks (A, B and C). A 0.05 M aq. solution of NaHCO
to flask A, a 0.05 M aq. solution Na CO (50 mL) was added to flask B,
2 3
3
(50 mL) was added
[5]
[6]
[7]
M. Selva, M. Gottardo, A. Perosa ACS Sustainable Chem. Eng. 2013, 1,
180−189
and finally, a 0.05 M aq. solution of NaOH (50 mL) was added to flask C.
The so-prepared suspensions were allowed to equilibrate for 72 h. Each
basic solution was filtered on a paper and stored in a closed vessel. Then,
a retro-titration method was used to evaluate the final pH: a 10-mL aliquot
of each of the recovered basic solutions was added with a 0.05 M aq.
solution of HCl and stirred for 10 min. The solutions as prepared were
titrated with a 0.05 M solution of NaOH and the equilibrium point was
evaluated using phenolphtalein as an indicator. Each titration was
K. Shill, S. Padmanabhan, Q. Xin, J. M. Prausnitz, D. S. Clark, H. W.
Blanch Biotechnol. Bioeng. 2011, 108, 511–520
M. Sendovski, N. Nir, A. Fishman J. Agric. Food Chem., 2010, 58, 2260–
2265
[8]
[9]
B. Saha, M. M. Abu-Omar Green Chem., 2014, 16, 24–38.
Y. Li, G. Lv, Y. Wang, T. Deng, Y. Wang, X. Hou, Y. Yang Chemistry
Select 2016, 6, 1252–1255.
[10] (a) L. A. Blanchard, J. F. Brennecke Ind. Eng. Chem. Res. 2001, 40, 287-
292; (b) S. Keskin, D. Kayrak-Talay, U. Akman, O. Hortacsu, J.
Supercritical Fluids 2007, 43, 150–180.
2 3
performed three times. In the case of aq. Na CO , 20 mL of 0.05 M HCl
were used. The quantities of the different surface groups (phenolic,
lactonic, and carboxyl groups) are calculated based on their different
[11] J.-M. Andanson, F. Jutz, A. Baiker J. Phys. Chem. B 2009, 113, 10249–
10254.
reactivity with bases: aq. NaOH neutralises all surface groups, aq. Na
reacts with both carboxyl and lactonic groups, and finally, NaHCO reacts
only with carboxylic groups. Therefore, the amount (µeq/g) of carboxylic
groups is determined directly from the reacted NaHCO , while the amount
of carboxyl and lactonic groups is calculated by the difference of reacted
Na CO and NaHCO , and the number of surface phenols is measured by
2 3
CO
3
[12] S. V. Dzyuba, R. A. Bartsch Angew. Chem. Int. Ed. 2003, 42(2), 148-150
[13] (a) X. Sun, Z. Liu, Z. Xue, Y. Zhanga, T. Mu Green Chem., 2015, 17,
2719–2722; (b) C. Shi, J. Xin, X. Liu, X.-G. Lu, S. Zhang ACS Sustainable
Chem. Eng., 2016, 4, 557–563.
3
2
3
3
[14] C. I. Melo, R. Bogel-Łukasik, E. Bogel-Łukasik J. Supercritical Fluids
2012, 61, 191–198.
the difference between reacted NaOH and Na
titration are reported in Table 6.
2 3
CO . Results of Bohem
[15] A. M. da Costa Lopes, M. Brenner, P. Falé, L. B. Roseiro, R. Bogel-
Łukasik ACS Sustainable Chem. Eng., 2016, 4, 3357–3367.
[
16] D. L. Minnick, A. M. Scurto Chem Commun (Camb). 2015, 51, 12649–
The point of zero charge (pHpzc) evaluation. The procedure was carried out
starting from the reference catalyst (5% Ru/C) and carbons 3 and 4 of
Table 3. A method reported in the literature was followed.52 A sample
12652.
[17]
(a) C. Michel, P. Gallezot ACS Catal., 2015, 5, 4130–4132; (b) M.
Pagliaro and M. Rossi, In The Future of Glycerol, 2nd Ed. Royal Society
of Chemistry, 2010; (c) C. Michel, J. Zaffran, A. M. Ruppert, J. Matras-
Michalska, M. Jędrzejczyk, J. Grams, P. Sautet Chem. Commun. 2014,
(0.020 g each) was introduced in a graduated cylinder to which milli-Q
water (10 mL) was added. A pH-meter coupled with a DLS analyser were
used to measure the pH and the potential of the suspension. The latter
50, 12450-12453; (d) J. Tan, J. Cui, G. Ding, T. Deng, Y. Zhu, Y-W. Li
(suspension) was then gradually acidified by an automatic device with
Catal. Sci. Technol. 2016, 6, 1469-1475; (e) M. G. Al-Shaal, W. R. H.
Wright, R. Palkovits Green Chem. 2012, 14, 1260-1263; (f) A. M. Raspolli
Galletti, C. Antonetti, V. De Luise, M. Martinelli Green Chem., 2012, 14,
which two different solutions, a 0.05 M of HCl and a 0.01 M of HCl, were
added dropwise. The potential was then measured as a function of pH
(Figure S16 exemplifies the results for carbons 3 and 4).
6
88–694; (g) J. Tan, J. Cui, T. Deng, X. Cui, G. Ding, Y. Zhu, Y. Li
ChemCatChem 2015, 7, 508–512
18] M. Fabris, V. Lucchini, M. Noè, A. Perosa, M. Selva Chem. Eur. J. 2009,
5, 12273–12282
[
[
Acknowledgements
1
19] (a) D. S. Cameron, S. J. Cooper, I. L. Dodgson, B. Harrison, J. W.
Jenkins Catal. Today 1990, 7, 113-137; (b) E. Auer, A. Freund, J. Pietsch,
T. Tacke Appl. Catal. A: General, 1998, 173, 259-271
Mrs F. Visin and Mrs M. Marchiori from DAIS and DSMN of
Ca‘ Foscari University are kindly acknowledged for their support
[
20] (a) G. M. Whitesides, C. L. Hill, J.-C. Brunie Ind. Eng. Chem., Proc. Des.
Dev., 1976, 15, 226-227; (b) A.-H. Lu, W. Schmidt, N. Matoussevitch, H.
Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, F. Schuth Angew.
Chem. Int. Ed. 2004, 43, 4303 –4306.
2
with ICP analysis and characterization by N adsorption isotherms,
respectively.
Keywords: multiphase systems • levulinic acid • hydrogenation •
[21] F. K. Kazi, A. D. Patel, J. C. Serrano-Ruiz, J. A. Dumesic and R. P. Anex,
Chem. Eng. J., 2011, 169, 329–338
reductive amination • catalyst recovery
[
22] I. Sádaba, M. López Granados, A. Riisager, E. Taarning Green Chem.,
2
015, 17, 4133–4145.
[
1]
(a) P. Tundo, A. Perosa, Chem. Soc. Rev., 2007, 36, 532– 550; (b)
Multiphase Homogeneous Catalysis, (Eds.: B. Cornils, W. A. Herrmann,
I. T. Horváth, W. Leitner, S. Mecking , H. Olivier-Bourbigou, D. Vogt),
Wiley-VCH, Weinheim, 2005; (c) Regulated Systems for Multiphase
Catalysis (Eds.: W. Leitner, M. Hölscher), Topics in Organometallic
Chemistry, Springer, 2008.
[
[
[
23] Z.-P. Yan, L. Lin, S. Liu Energy & Fuels 2009, 23, 3853–3858.
24] U. K. Singh, M. A. Vannice Appl. Catal. A: General 2001, 213, 1–24
25] J. M. Tukacs, B. Fridrich, G. Dibó, E. Székely, L. T. Mika Green Chem.,
2015, 17, 5189–5195.
[
[
26] (a) P. Puthiaraj, P. Suresh, K. Pitchumani Green Chem., 2014, 16, 2865–
2875; (b) D. J. Macquarrie, B. Gotov, S.Toma Platinum Metal Rev., 2001,
[2]
(a) V. I. Parvulescu, C. Hardacre Chem. Rev. 2007,107,2615−2665; (b)
Nanocatalysis in Ionic Liquids (Ed.: M. H. G. Prechtl), Wiley-VCH,
Weinheim, 2016; (c) M. Selva, A. Perosa, P. Canton Curr. Org. Chem.,
45, 102-110.
27] (a) L. Qi, Y. Fung Mui, S. Wing Lo, M. Y. Lui, G. R. Akien, I. T. Horvath
ACS Catal. 2014, 4, 1470-1477; (b) F. Salak Asghari, H. Yoshida Ind.
Eng. Chem. Res. 2007, 46, 7703-7710.
2017, 21, 2445-2454.
[
3]
4]
Catalysis in Ionic Liquids: From Catalyst Synthesis to Application (Eds.:
V. I. Parvulescu, C. Hardacre), Catalysis Series n° 15, the Royal Society
of Chemistry, 2014.
[
28] C. Fellay, P. J. Dyson, G. Laurenczy Angew. Chem., Int. Ed. 2008, 120,
4
030 –4032.
29] (a) V. Fabos, L. T. Mika, I. T. Horvath Organometallics 2014, 33, 181-
87; (b) Deng, L.; Li, J.; Lai, D. M.; Fu, Y.; Guo, Q. X. Angew. Chem., Int.
[
[
(a) S. Hu, Z. Zhang, Y. Zhou, B. Han, H. Fan, W. Li, J. Song, Y. Xie Green
Chem., 2008, 10, 1280–1283 (b) J. Y. G. Chan, Y. Zhang,
ChemSusChem 2009, 2, 731–734; (c) T. Stahlberg, W. Fu, J. M.
Woodley, and A. Riisager, A. ChemSusChem 2011, 4, 451–458.
1
Ed. 2009, 48, 6529-6532
[
30] A. M. Ruppert, M. Jędrzejczyk, O. Sneka-Płatek, N. Keller, A. S. Dumon,
C. Michel, P. Sautet, J. Grams Green Chem., 2016, 18, 2014–2028
This article is protected by copyright. All rights reserved.