Paper
Catalysis Science & Technology
Conclusions
13 G. Goncalves, P. A. A. P. Marques, C. M. Granadeiro, H. I. S.
Nogueira, M. K. Singh and J. Grácio, Chem. Mater., 2009, 21,
A rGO supported Rh NP nanocomposite material prepared in
4
796–4802.
4
[bmim]ijBF ] using microwave dielectric heating, termed Rh
1
1
4 S. Basu and S. K. Hazra, C, 2017, 3, 29.
5 A. V. Singhal, H. Charaya and I. Lahiri, Crit. Rev. Solid State
Mater. Sci., 2017, 42, 499–526.
NP–rGO, is a highly effective catalyst for the selective reduc-
tion of heterocyclic rings, e.g. quinolines and benzofurans,
even in the presence of other reducible functionalities. The
microwave-assisted ionic liquid synthesis affords a fine dis-
persion of Rh NPs on the surface of rGO sheets, which leads
to the high activity and recyclability. The catalyst prepared
using the microwave treatment is superior to that prepared
via conventional thermal methods. Moreover, compared to
other catalysts used for the selective reduction of heterocyclic
substrates, the Rh NP–rGO system is more selective and
operates at lower pressures and temperatures. Furthermore,
the Rh NP–rGO catalyst could also be recycled several times
without a significant loss of selectivity.
1
1
1
6 A. C. H. Tsang, H. Y. H. Kwok and D. Y. C. Leung, Solid
State Sci., 2017, 67, A1–A14.
7 D. Wang, R. Zhang, J. Li, X. Hao, C. Ding, L. Zhao, G. Wen,
J. Liu and W. Zhou, J. Mater. Chem. A, 2017, 5, 1687–1697.
8 R. Bajpai, S. Roy, P. Kumar, P. Bajpai, N. Kulshrestha, J.
Rafiee, N. Koratkar and D. S. Misra, ACS Appl. Mater.
Interfaces, 2011, 3, 3884–3889.
1
2
2
2
9 G. Lee, J. H. Shim, H. Kang, K. M. Nam, H. Song and J. T.
Park, Chem. Commun., 2009, 5036–5038.
0 R. Nie, J. Wang, L. Wang, Y. Qin, P. Chen and Z. Hou,
Carbon, 2012, 50, 586–596.
1 D. Wang, W. Niu, M. Tan, M. Wu, X. Zheng, Y. Liu and N.
Tsubaki, ChemSusChem, 2014, 7, 1398–1406.
2 F. Chen, A.-E. Surkus, L. He, M.-M. Pohl, J. Radnik, C. Topf,
K. Junge and M. Beller, J. Am. Chem. Soc., 2015, 137,
Conflicts of interest
There are no conflicts to declare.
1
1718–11724.
Acknowledgements
2
2
2
3 X. Cui, Y. Li, S. Bachmann, M. Scalone, A.-E. Surkus, K.
Junge, C. Topf and M. Beller, J. Am. Chem. Soc., 2015, 137,
1
4 M. Tan, G. Yang, T. Wang, T. Vitidsant, J. Li, Q. Wei, P. Ai,
We thank the Swiss National Science Foundation and EPFL
for financial support. We are also grateful to CIME (Interdisci-
plinary Centre for Electron Microscopy, EPFL) and Dr.
Thomas LaGrange for the assistance with the characterization
of the NPs. We thank Dr. Pierre Mettraux for the assistance
with XPS measurements and Dr. Arnaud Magrez for the assis-
tance with XRD analysis.
0652–10658.
M. Wu, J. Zheng and N. Tsubaki, Catal. Sci. Technol.,
2
016, 6, 1162–1172.
5 K. Schütte, J. Barthel, M. Endres, M. Siebels, B. M. Smarsly,
J. Yue and C. Janiak, ChemistryOpen, 2017, 6, 137–148.
6 S. Wegner and C. Janiak, Top. Curr. Chem., 2017, 375, 65.
7 C. Daguenet, P. J. Dyson, I. Krossing, A. Oleinikova, J.
Slattery, C. Wakai and H. Weingärtner, J. Phys. Chem. B,
2
2
References
2
006, 110, 12682–12688.
1
2
M. Freifelder, Adv. Catal., 1963, 14, 203–253.
D.-S. Wang, Q.-A. Chen, S.-M. Lu and Y.-G. Zhou, Chem. Rev.,
28 H. Weingärtner, P. Sasisanker, C. Daguenet, P. J. Dyson, I.
Krossing, J. M. Slattery and T. Schubert, J. Phys. Chem. B,
2007, 111, 4775–4780.
2
012, 112, 2557–2590.
3
4
5
6
7
8
9
C. Deraedt, R. Ye, W. T. Ralston, F. D. Toste and G. A.
Somorjai, J. Am. Chem. Soc., 2017, 139, 18084–18092.
D. Ren, L. He, L. Yu, R.-S. Ding, Y.-M. Liu, Y. Cao, H.-Y. He
and K.-N. Fan, J. Am. Chem. Soc., 2012, 134, 17592–17598.
A. Sánchez, M. Fang, A. Ahmed and R. A. Sánchez-Delgado,
Appl. Catal., A, 2014, 477, 117–124.
29 D. D. Lovingood and G. F. Strouse, Nano Lett., 2008, 8,
3394–3397.
30 C. Vollmer, E. Redel, K. Abu-Shandi, R. Thomann, H.
Manyar, C. Hardacre and C. Janiak, Chem. – Eur. J., 2010, 16,
3849–3858.
31 D. Marquardt, C. Vollmer, R. Thomann, P. Steurer, R.
Mülhaupt, E. Redel and C. Janiak, Carbon, 2011, 49, 1326–1332.
32 M.-G. Ma, Y.-Y. Dong, L.-H. Fu, S.-M. Li and R.-C. Sun,
Carbohydr. Polym., 2013, 15, 1669–1676.
33 M.-G. Ma, J.-F. Zhu, Y.-J. Zhu and R.-C. Sun, Chem. – Asian J.,
2014, 9, 2378–2391.
M. Guo, C. Li and Q. Yang, Catal. Sci. Technol., 2017, 7,
2
221–2227.
L. Tao, Q. Zhang, S.-S. Li, X. Liu, Y.-M. Liu and Y. Cao, Adv.
Synth. Catal., 2015, 357, 753–760.
Y. Gong, P. Zhang, X. Xu, Y. Li, H. Li and Y. Wang, J. Catal.,
2
013, 297, 272–280.
34 H. Yang, C. Shan, F. Li, D. Han, Q. Zhang and L. Niu, Chem.
Commun., 2009, 3880–3882.
Q.-L. Zhu and Q. Xu, Chem, 2016, 1, 220–245.
1
1
0 J. Pyun, Angew. Chem., Int. Ed., 2011, 50, 46–48.
1 P. P. Upare, M. Lee, S.-K. Lee, J. W. Yoon, J. Bae, D. W.
Hwang, U. H. Lee, J. S. Chang and Y. K. Hwang, Catal.
Today, 2016, 265, 174–183.
35 M. S. L. Hudson, H. Raghubanshi, S. Awasthi, T.
Sadhasivam, A. Bhatnager, S. Simizu, S. G. Sankar and O. N.
Srivastava, Int. J. Hydrogen Energy, 2014, 39, 8311–8320.
36 Z. Bo, X. Shuai, S. Mao, H. Yang, J. Qian, J. Chen, J. Yan and
K. Cen, Sci. Rep., 2014, 4, 4684.
1
2 C. Huang, C. Li and G. Shi, Energy Environ. Sci., 2012, 5,
8
848–8868.
37 M. Thommes, Chem. Ing. Tech., 2010, 82, 1059–1073.
Catal. Sci. Technol.
This journal is © The Royal Society of Chemistry 2018