10.1002/anie.201809275
Angewandte Chemie International Edition
COMMUNICATION
Tellez, Z. S. Nixon, L. J. Kang, A. L. Carter, S. R. Kunkel, K. C.
Przeworski, G. A. Chass, Angew. Chem. Int. Ed. 2009, 48, 6836-6839.
P. Li, R. Wischert, P. Métivier, Angew. Chem. Int. Ed. 2017, 56, 15989-
15992; Angew. Chem. 2017, 129, 16205–16208.
the corresponding bis(chlorophosphonium chlorides, only the
latter could be reduced in moderate yield of 45%. Next, we
investigated the reactivity of alkyl-substituted phosphane oxides.
Both, the benzyl and cyclohexyl derivatives 2h and 2i were
reduced in 48% and 85% yield respectively, although differing
methods were required. The low yield of 2h may arise from a
nucleophilic substitution on the chlorophosphonium intermediate
by chloride. Steric hindrance in 1i provides some kinetic
stabilization and leads to significantly enhanced yield. Higher
steric congestion in the tricyclohexyl derivative 1j did not result in
the formation of 2j although quantitative formation of the
corresponding chlorophosphonium chloride was observed. This is
in agreement with a higher computed reaction barrier of 39.7
kcal∙mol− and an endergonic reaction free energy of 6 kcal∙mol−
from 5j to 2j (For details see the Supporting Information). Finally,
we investigated the impact of electron-withdrawing groups on the
arene ring. Substituents in the 4-position of the arene ring in 1k-
m were well tolerated and the functionalized phoshanes were
obtained in 90-98 % yield. Also, fluorinated triphenylphosphane
derivatives 1n-p were reactive. Whereas the 4-fluoro derivative
1n was reduced in 86% yield, the corresponding CF3-substituted
derivative 1o was only reactive in the presence of 20 mol% of the
FLP. However, the 2-fluorophenyl derivative 1p was obtained in
high yield of 86%.
[3]
[4]
a) K. V. Rajendran, D. G. Gilheany, Chem. Commun. 2012, 48, 817-819;
b) K. V. Rajendran, D. G. Gilheany, Chem. Commun. 2012, 48, 10040-
10042.
[5]
[6]
H. Babad, A. G. Zeiler, Chem. Rev. 1973, 73, 75-91.
a) L. Horner, H. Hoffmann, P. Beck, Chem. Ber. 1958, 91, 1583-1588; b)
R. Salmon, John Wiley & Sons, Ltd., 2001, p. No pp. given; c) T. Yano,
M. Hoshino, M. Kuroboshi, H. Tanaka, Synlett 2010, 801-803; d) T. Yano,
M. Kuroboshi, H. Tanaka, Tetrahedron Lett. 2010, 51, 698-701.
Method for synthesizing cyclohexyl-substituted phosphines, A. Tishkov,
K. Massonne, D. Mirk, J. Henkelmann, M. Maase, T. Wettling, US
2010/0137643 A1, 03.06.2010, BASF SE, Ludwigshafen.
[7]
[8]
1
1
a) D. W. Stephan, Org. Biomol. Chem. 2008, 6, 1535-1539; b) D. W.
Stephan, Dalton Trans. 2009, 3129-3136; c) D. W. Stephan, G. Erker,
Angew. Chem. Int. Ed. 2010, 49, 46-76; Angew. Chem. 2010, 122, 50-
81; d) J. Paradies, Synlett 2013, 777-780; e) D. Stephan, G. Erker, Isr. J.
Chem. 2015, 55, 133-133; f) D. W. Stephan, J. Am. Chem. Soc. 2015,
137, 10018-10032; g) D. W. Stephan, G. Erker, Angew. Chem. Int. Ed.
2015, 54, 6400-6441; Angew. Chem. 2015, 127, 6498-6541.
a) C. B. Caputo, L. J. Hounjet, R. Dobrovetsky, D. W. Stephan, Science
2013, 341, 1374-1377; b) L. J. Hounjet, C. B. Caputo, D. W. Stephan,
Dalton Trans. 2013, 42, 2629-2635; c) M. Perez, C. B. Caputo, R.
Dobrovetsky, D. W. Stephan, Proc. Natl. Acad. Sci. U. S. A. 2014, 111,
10917-10921; d) M. H. Holthausen, M. Mehta, D. W. Stephan, Angew.
Chem. Int. Ed. 2014, 53, 6538-6541; Angew. Chem. 2014, 126, 6656-
6659; e) S. A. Weicker, D. W. Stephan, Bull. Chem. Soc. Jpn. 2015, 88,
1003-1016; f) M. H. Holthausen, R. R. Hiranandani, D. W. Stephan,
Chem. Sci. 2015, 6, 2016-2021.
[9]
In summary, we have developed the metal-free reduction of
phosphane oxides using oxalyl chloride and H2. Quantum-
mechanical calculations support the EPC-mediated heterolytic
splitting of H2 by the in situ generated chlorophosphonium ion
followed by barrierless conversion to the phosphane and HCl. The
applicability of the reduction was demonstrated for electron-
donating and electron-withdrawing group substituted triaryl
phosphane oxides providing the products in 51-98% yield.
[10] T. vom Stein, M. Perez, R. Dobrovetsky, D. Winkelhaus, C. B. Caputo,
D. W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 10178-10182.
[11] a) J. M. Blackwell, E. R. Sonmor, T. Scoccitti, W. E. Piers, Org. Lett. 2000,
2, 3921-3923; b) M. Rubin, T. Schwier, V. Gevorgyan, J. Org. Chem.
2002, 67, 1936-1940; c) J. Hermeke, M. Mewald, M. Oestreich, J. Am.
Chem. Soc. 2013, 135, 17537-17546; d) A. Simonneau, M. Oestreich,
Angew. Chem. Int. Ed. 2013, 52, 11905-11907; Angew. Chem. 2013, 125,
12121–12124; e) L. Greb, S. Tamke, J. Paradies, Chem. Commun. 2014,
50, 2318-2320; f) M. Oestreich, J. Hermeke, J. Mohr, Chem. Soc. Rev.
2015, 44, 2202-2220; g) M. H. Holthausen, J. M. Bayne, I. Mallov, R.
Dobrovetsky, D. W. Stephan, J. Am. Chem. Soc. 2015, 137, 7298-7301;
h) M. H. Holthausen, R. R. Hiranandani, D. W. Stephan, Chem. Sci. 2015,
6, 2016-2021; i) P. Manuel, Q. Zheng-Wang, C. C. B., P. Vitali, H. L. J.,
H. Andreas, D. Roman, G. Stefan, S. D. W., Chem. Eur. J. 2015, 21,
6491-6500; j) M. Mehta, M. H. Holthausen, I. Mallov, M. Perez, Z. W. Qu,
S. Grimme, D. W. Stephan, Angew. Chem. Int. Ed. 2015, 54, 8250-8254;
k) M. Mehta, I. G. de la Arada, M. Perez, D. Porwal, M. Oestreich, D. W.
Stephan, Organometallics 2016, 35, 1030-1035; l) V. Fasano, J. H. W.
LaFortune, J. M. Bayne, M. J. Ingleson, D. W. Stephan, Chem. Commun.
2018, 54, 662-665; m) A. Augurusa, M. Mehta, M. Perez, J. T. Zhu, D.
W. Stephan, Chem. Commun. 2016, 52, 12195-12198.
Acknowledgements
The German science foundation (DFG) and the Fonds der
Chemischen Industrie (FCI) are gratefully acknowledged for
financial support (PA 1562/6-1, PA 1562/16-1 and Gottfried
Wilhelm Leibnitz prize to SG). DWS acknowledges the support of
NSERC of Canada and is grateful for the award of a Canada
Research Chair and a Einstein Visiting Professorship in Berlin.
Keywords: hydrogenation • phosphane oxide • phosphane •
frustrated Lewis pair • electrophilic phosphonium cation
[12] a) S. M. Godfrey, C. A. McAuliffe, R. G. Pritchard, J. M. Sheffield, Chem.
Commun. 1996, 2521-2522; b) N. Bricklebank, S. M. Godfrey, C. A.
McAuliffe, P. Deplano, M. L. Mercuri, J. M. Sheffield, Dalton Trans. 1998,
2379-2382; c) S. M. Godfrey, C. A. McAuliffe, I. Mushtaq, R. G. Pritchard,
J. M. Sheffield, Dalton Trans. 1998, 3815-3818; d) S. M. Godfrey, C. A.
McAuliffe, R. G. Pritchard, J. M. Sheffield, Chem. Commun. 1998, 921-
922.
[1]
[2]
M. Eggersdorfer, D. Laudert, U. Letinois, T. McClymont, J. Medlock, T.
Netscher, W. Bonrath, Angew. Chem. Int. Ed. 2012, 51, 12960-12990;
Angew. Chem. 2012, 124, 13134–13165
a) L. Horner, W. D. Balzer, Tetrahedron Lett. 1965, 6, 1157-1162; b) N.
L. Bauld, F. Farr, J. Am. Chem. Soc. 1969, 91, 2788-&; c) R. Tang, K.
Mislow, J. Am. Chem. Soc. 1969, 91, 5644-&; d) K. Naumann, G. Zon, K.
Mislow, J. Am. Chem. Soc. 1969, 91, 7012-&; e) K. L. Marsi, J. Org.
Chem. 1974, 39, 265-267; f) T. Coumbe, N. J. Lawrence, F. Muhammad,
Tetrahedron Lett. 1994, 35, 625-628; g) H. C. Wu, J. Q. Yu, J. B. Spencer,
Org. Lett. 2004, 6, 4675-4678; h) M. Berthod, A. Favre-Reguillon, J.
Mohamad, G. Mignani, G. Docherty, M. Lemaire, Synlett 2007, 1545-
1548; i) C. Petit, A. Favre-Reguillon, B. Albela, L. Bonneviot, G. Mignani,
M. Lemaire, Organometallics 2009, 28, 6379-6382; j) C. J. O'Brien, J. L.
[13] In chloroform the equilibrium was shifted to the chlorophosphonium
species, wheras in toluene the dichlorophosphorane was the dominant
species.
[14] a) D. Naumann, H. Butler, R. Gnann, Z. Anorg. Allg. Chem. 1992, 618,
74-76; b) L. Greb, C. G. Daniliuc, K. Bergander, J. Paradies, Angew.
Chem. Int. Ed. 2013, 52, 5876-5879; Angew. Chem. 2013, 125, 5989-
5992; c) J. A. Nicasio, S. Steinberg, B. Ines, M. Alcarazo, Chem. Eur. J.
This article is protected by copyright. All rights reserved.