T. An et al. / Journal of Molecular Catalysis A: Chemical 333 (2010) 128–135
135
500
400
300
200
100
0
Thus, by combining our chemical analysis with the mutagenicity
assessment of intermediates, we can conclude that photocatalytic
technology is an effective detoxification method for o-toluidine in
the gaseous phase. This work is of great importance in the applica-
tion of photocatalytic technology for detoxifying aromatic amines
in the environmental waste management field.
4000 μg plant-1
2000 μg plant-1
1000 μg plant-1
500 μg plant-1
negative control
Acknowledgements
This is contribution No. IS-1255 from GIGCAS. This work was
financially supported by the National Natural Science Foundation
of China (40572173) and the Science and Technology Project of
Guangdong Province, China (2007A032301002, 2009B030400001
and 2009A030902003).
0 min
30 min
60 min
180 min
References
120 min
240 min
Time (min)
[1] R. Stabbert, K.H. Schafer, C. Biefel, K. Rustemeier, Rapid Commun. Mass. Spec-
trom. 17 (2003) 2125–2132.
[2] N. Danford, Mutat. Res. 258 (1991) 207–236.
[3] R.J. Brennan, R.H. Schiestl, Mutat. Res. 430 (1999) 37–45.
[4] M.J. Plewa, T. Gichner, H. Xin, K.Y. Seo, S.R. Smith, E.D. Wagner, Environ. Toxicol.
Chem. 12 (1993) 1353–1363.
Fig. 9. Mutagenic intensity of different tested doses of raw o-toluidine and its inter-
mediates to TA100 (+S9) treated at different photocatalytic degradation intervals.
vation. It was noticeable that the numbers of revertants per plate
obtained for the TA100 strain with S9 decreased rapidly after 60-
min photocatalytic degradation, and the MI values were all less
than 2, indicating that the intermediates with mutagenicity can be
subsequently photocatalytically degraded to less mutagenic new
daughter intermediates with an increase in treatment time. To
clearly illustrate the detoxification ability of gaseous intermediates
at different photocatalytic degradation intervals, the histogram of
mutagenicity intensity to TA100 (+S9) at 4000, 2000, 1000, and
500 g plate−1 is shown (Fig. 9). The profiles of the mutagenic toxic-
ity for TA100 (+S9) decreased rapidly with increases in degradation
time, except for a slight increase at 30 min. The number of rever-
tants per plate is close to the spontaneous reversions in all the dose
groups after 120 min reaction. This indicates that the photocat-
alytic technology exhibited the ability to detoxify indirect-acting
mutagenic organic pollutants efficiently, and that the gaseous out-
let mixture of o-toluidine does not show mutagenicity to human
beings and other organisms after 240 min photocatalytic degrada-
tion. The mutagenicity of the intermediates deposited onto TiO2
thin films is not reported in this paper.
[5] H.J.C. Klamer, L.A. Villerius, J. Roelsma, P.G.J. De Maagd, A. Opperhuizen, Envi-
ron. Toxicol. Chem. 16 (1997) 857–861.
[6] H.Y. Choi, Y.J. Kim, H.K. Jeon, J.C. Ryu, Mol. Cell. Toxocol. 4 (2008) 285–292.
[7] L.D. Claxton, G.M. Woodall, Mutat. Res. 636 (2007) 36–94.
[8] E. Dybing, J. O’Brien, A.G. Renwick, T. Sanner, Toxicol. Lett. 180 (2008) 110–117.
[9] L.D. Claxton, P.P. Matthews, S.H. Warren, Mutat. Res. 567 (2004) 347–399.
[10] N. Hada, Y. Totsuka, T. Enya, K. Tsurumaki, M. Nakazawa, N. Kawahara, Y.
Murakami, Y. Yokoyama, T. Sugimura, K. Wakabayashi, Mutat. Res. 493 (2001)
115–126.
[11] R.L. Gupta, I.P. Kaur, A.K. Gupta, D.P. Pathak, T.R. Juneja, Toxicol. Lett. 48 (1989)
75–81.
[12] S. Artkla, W. Kim, W. Choi, J. Wittayakun, Appl. Catal. B: Environ. 91 (2009)
157–164.
[13] H. Hidaka, E. Garcia-Lopez, L. Palmisano, N. Serpone, Appl. Catal. B: Environ. 78
(2008) 139–150.
[14] A.N. Parvulescu, P.A. Jacobs, D.E. De Vos, Appl. Catal. A: Gen. 368 (2009) 9–16.
[15] Y.H. Chen, Y.Y. Liu, R.H. Lin, F.S. Yen, J. Hazard. Mater. 163 (2009) 973–981.
[16] T.C. An, G.Y. Li, X.H. Zhu, J.M. Fu, G.Y. Sheng, Z. Kun, Appl. Catal. A: Gen. 279
(2005) 247–256.
[17] M.E. Osugi, G.A. Umbuzeiro, F.J.V. De Castro, M.V.B. Zanoni, J. Hazard. Mater.
137 (2006) 871–877.
[18] G.Y. Li, T.C. An, X.P. Nie, G.Y. Sheng, X.Y. Zeng, J.M. Fu, Z. Lin, E.Y. Zeng, Environ.
Toxicol. Chem. 26 (2007) 416–423.
[19] M.J. Cantavenera, I. Catanzaro, V. Loddo, L. Palmisano, G. Sciandrello, J. Pho-
tochem. Photobiol. A: Chem. 185 (2007) 277–282.
[20] J.H. Mo, Y.P. Zhang, Q.J. Xu, Y.F. Zhu, J.J. Lamson, R.Y. Zhao, Appl. Catal. B: Environ.
89 (2009) 570–576.
[21] L. Sun, T.C. An, S.G. Wan, G.Y. Li, N.Z. Bao, X.H. Hu, J.M. Fu, G.Y. Sheng, Sep. Purif.
Technol. 68 (2009) 83–89.
4. Conclusion
[22] L. Sun, G.Y. Li, S.G. Wan, T.C. An, Chemosphere 78 (2010) 313–318.
[23] D.M. Maron, B.N. Ames, Mutat. Res. 113 (1983) 173–215.
[24] G. Valent, M. Sato, M. Cristina, L. Coelho, C. Coimbrao, P. Sanchez, M. Martins,
R. Bonatelli Jr., Environ. Toxicol. Water Qual. 8 (1993) 371–381.
[25] M.R. Hoffmann, S.T. Martin, W.Y. Choi, D.W. Bahnemann, Chem. Rev. 95 (1995)
69–96.
[26] B. Pal, M. Sharon, J. Mol. Catal. A: Chem. 160 (2000) 453–460.
[27] C.M. Huang, G.T. Pan, P.Y. Peng, T.C.K. Yang, J. Mol. Catal. A: Chem. 327 (2010)
38–44.
[28] L.X. Cao, Z. Gao, S.L. Suib, T.N. Obee, S.O. Hay, J.D. Freihaut, J. Catal. 196 (2000)
253–261.
[29] F. Frola, F. Prinetto, G. Ghiotti, L. Castoldi, I. Nova, L. Lietti, P. Forzatti, Catal.
Today 126 (2007) 81–89.
[30] S. Morandi, F. Prinetto, G. Ghiotti, M. Livi, A. Vaccari, Micropor. Mesopor. Mater.
107 (2008) 31–38.
[31] V. Augugliaro, S. Coluccia, V. Loddo, L. Marchese, G. Martra, L. Palmisano, M.
Schiavello, Appl. Catal. B: Environ. 20 (1999) 15–27.
[32] W.B. Zhang, X.M. Xiao, T.C. An, Z.G. Song, J.M. Fu, G.Y. Sheng, M.C. Cui, J. Chem.
Technol. Biotechnol. 78 (2003) 788–794.
Gaseous o-toluidine was successfully detoxified using photocat-
alytic technology within a 240 min reaction, and the degradation
kinetics of o-toluidine followed a pseudo-first-order reaction. Two
intermediates of toluene and phenol were found in the gas phase.
Small amounts of 2-hydroxybenzaldehyde, 2-nitrobenzaldehyde,
2-hydroxybenzenemethanol, 2-methylphenol, 2-hydroxybenzoic
acid, and phenol were also identified on the surface of the thin
films photocatalyst during the photocatalytic process. Further-
more, Ames assay results showed that o-toluidine presented weak
mutagenic activity against the TA100 strain in the presence of S9
metabolic activation at tested doses. The mutagenic toxicity of its
gaseous intermediates also increased slightly after a 30-min photo-
catalytic degradation. Finally, the samples in gas phase did not show
any mutagenic activity after 240 min photocatalytic degradation.