PIERROT ET AL.
5
REFERENCES
Oishi, T., Nagai, M., & Ban, Y. (1968). The reactions of activated amides.
Part (II). A new synthetic route to ββ-disubstituted indoline derivatives.
Tetrahedron Letters, 9, 491–495.
Phyo, A. P., & Nosten, F. (2018). The artemisinin resistance in Southeast
Santos, M. M. M. (2014). Recent advances in the synthesis of biologically
active spirooxindoles. Tetrahedron, 70, 9735–9757.
Seaton, J. C., Nair, M. D., Edwards, O. E., & Marion, L. (1960). The Strucu-
tre and stereoisomerism of three Mitragyna alkaloids. Canadian Journal
of Chemistry, 38, 1035–1042.
Sinou, V., Fiot, J., Taudon, N., Mosnier, J., Martelloni, M., Bun, S. S., …
Ollivier, E. (2010). High-performance liquid chromatographic method
for the quantification of Mitragyna inermis alkaloids in order to per-
form pharmacokinetic studies. Journal of Separation Science, 33,
Ancolio, C., Azas, N., Mahiou, V., Ollivier, E., Di Giorgio, C., Keita, A., …
Balansard, G. (2002). Antimalarial activity of extracts and alkaloids iso-
lated from six plants used in traditional medicine in Mali and Sao Tome.
Phytotherapy Research, 16, 646–649.
Ang, K. K. H., Holmes, M. J., Higa, T., Hamann, M. T., & Kara, U. A. K.
(
2000). In vivo antimalarial activity of the Beta-Carboline alkaloid Man-
zamine A. Antimicrobial Agents and Chemotherapy, 44, 1645–1649.
Antonchick, A. P., Gerding-Reimers, C., Catarinella, M., Schürmann, M.,
Preut, H., Ziegler, S., … Waldmann, H. (2010). Highly enantioselective
synthesis and cellular evaluation of spirooxindoles inspired by natural
products. Nature Chemistry, 2, 735–740.
Ashok, P., Ganguly, S., & Murugesan, S. (2013). Review on in-vitro anti-
malarial activity of natural β-carboline alkaloids. Mini-Reviews in Medici-
nal Chemistry, 13, 1778–1791.
Chan, S. T. S., Pearce, A. N., Page, M. J., Kaiser, M., & Copp, B. R. (2011).
Antimalarial β-Carbolines from the New Zealand ascidian Pseudodis-
toma opacum. Journal of Natural Products, 74, 1972–1979.
Cheng, D., Ishihara, Y., Tan, B., & Barbas, C. F., III. (2014). Organocatalytic
asymmetric assembly reactions: Synthesis of Spirooxindoles via Orga-
nocascade strategies. ACS Catalysis, 4, 743–762.
Dörnyei, G., Incze, M., Kajtár-Peredy, M., & Szántay, C. (2002). Intramolec-
ular Mannich reaction of 2-Oxotryptamine and homologues with Oxo
reagents yielding Spiro compounds. Part II. Collection of Czechoslovak
Chemical Communications, 67, 1669–1680.
Edmondson, S., Danishefsky, S. J., Sepp-Lorenzino, L., & Rosen, N. (1999).
Total synthesis of Spirotryprostatin a, leading to the discovery of some
biologically promising analogues. Journal of the American Chemical Soci-
ety, 121, 2147–2155.
1
863–1869.
Toure, H., Balansard, G., Pauli, A. M., & Scotto, A. M. (1996). Pharmacologi-
cal investigation of alkaloids from leaves of Mitragyna inermis
(
Rubiaceae). Journal of Ethnopharmacology, 54, 59–62.
Trager, W., & Jensen, J. B. (1976). Human malaria parasites in continuous
culture. Science, 193, 673–675.
Traore-Keita, F., Gasquet, M., Di Giorgio, C., Ollivier, E., Delmas, F.,
Keita, A., … Timon-David, P. (2000). Antimalarial activity of four plants
used in traditional medicine in Mali. Phytotherapy Research, 14, 45–47.
Trost, B. M., & Brennan, M. K. (2009). Asymmetric syntheses of Oxindole
and Indole Spirocyclic alkaloid natural products. Synthesis, 2009,
3
003–3025.
Wang, H., Ganesan, A. (2000).
−)-Spirotryprostatin B and related studies. The Journal of Organic
&
A biomimetic Total synthesis of
(
Chemistry, 65, 4685–4693.
Fiot, J., Baghdikian, B., Boyer, L., Mahiou, V., Azas, N., Gasquet, M., …
Ollivier, E. (2005). HPLC quantification of Uncarine D and the anti-
plasmodial activity of alkaloids from leaves of Mitragyna inermis
Wenkert, E., Udelhofen, J. H.,
& Bhattacharyya, N. K. (1959).
3
-Hydroxymethyleneoxindole and its derivatives. Journal of the Ameri-
can Chemical Society, 81, 3763–3768.
(
Willd.) O. Kuntze. Phytochemical Analysis, 16, 30–33.
World Health Organization. Strategy for malaria elimination in the greater
Mekong Subregion (2015–2030). World Health Organization, Geneva,
Switzerland.
World Health Organization. (2017a). World malaria report (p. 2017).
Geneva, Switzerland: World Health Organization.
World Health Organization. (2017b). Status report on artemisinin and ACT
resistance. Geneva, Switzerland: World Health Organization.
Ye, N., Chen, H., Wold, E. A., Shi, P. Y., & Zhou, J. (2016). Therapeutic
potential of Spirooxindoles as antiviral agents. ACS Infectious Diseases,
Fiot, J., Sanon, S., Azas, N., Mahiou, V., Jansen, O., Angenot, L., …
Ollivier, E. (2006). Phytochemical and pharmacological study of roots
and leaves of Guiera senegalensis J.F. Gmel (Combretaceae). Journal of
Ethnopharmacology, 106, 173–178.
Galliford, C. V., & Scheidt, K. A. (2007). Pyrrolidinyl-spirooxindole natural
products as inspirations for the development of potential therapeutic
agents. Angewandte Chemie, International Edition, 46, 8748–8758.
Harley-Mason, J., & Ingleby, R. F. J. (1958). Hydroxytryptamines. Part
IV. Synthesis and reactions of 2-3 -oxindolylethylamines. Journal of the
Chemical Society, 0, 3639–3642.
Incze, M., Dörnyei, G., Kajtár-Peredy, M., & Szántay, C. (1999). Intramolec-
ular Mannich reaction of 2-Oxotryptamines with acetone yielding
0
2
, 382–392.
Yeung, B. K. S., Zou, B., Rottmann, M., Lakshminarayana, S. B., Ang, S. H.,
Leong, S. Y., Keller, T. H. (2010). Spirotetrahydro β-Carbolines
Spiroindolones): A new class of potent and orally efficacious compounds
…
(
0
Spiro[indole-3,3 -pyrrolidin]-2-ones. Collection of Czechoslovak Chemi-
cal Communications, 64, 408–416.
for the treatment of malaria. Journal of Medicinal Chemistry, 53, 5155–5164.
Yu, B., Yu, D. Q., & Liu, H. M. (2015). Spirooxindoles: Promising scaffolds
for anticancer agents. European Journal of Medicinal Chemistry, 97,
Jansen, A. B. A., & Richards, C. G. (1965). A synthesis of some spiro
0
[
indoline-3,3 -pyrrolidines]. Tetrahedron, 21, 1327–1331.
6
73–698.
Krungkrai, J., & Krungkrai, S. R. (2016). Antimalarial qinghaosu/artemisinin:
The therapy worthy of a Nobel prize. Asian Pacific Journal of Tropical
Biomedicine, 6, 371–375.
Lambros, C., & Vanderberg, J. P. (1979). Synchronization of Plasmodium fal-
ciparum erythrocytic stages in culture. The Journal of Parasitology, 95,
Yu, Q., Guo, P., Jian, J., Chen, Y., & Xu, J. (2018). Nine-step total synthesis
of (−)-strychnofoline. Chemical Communications, 54, 1125–1128.
Zinnes, H., & Shavel, J., Jr. (1966). Yohimbane derivatives. III. The oxidative
rearrangement of Indole alkaloids to their Spirooxindole analogs. The
Journal of Organic Chemistry, 31, 1765–1771.
4
18–420.
Le Nagard, H., Vincent, C., Mentré, F., & Le Bras, J. (2011). Online analy-
sis of in vitro resistance to antimalarial drugs through nonlinear
regression. Computer Methods and Programs in Biomedicine, 104,
SUPPORTING INFORMATION
1
0–18.
Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.
Liang, H., & Wang, R. (2013). Recent advances in asymmetric Organocata-
0
lytic construction of 3,3 -Spirocyclic Oxindoles. Advanced Synthesis and
Catalysis, 355, 1023–1052.
Monjanel-Mouterde, S., Traore, F., Gasquet, M., Dodero, F., Demas, F.,
Ikoli, J. F., … Pisano, P. (2006). Lack of toxicity of hydroethanolic
extract from Mitragyna inermis (Willd.) O. Kuntze by gavage in the rat.
Journal of Ethnopharmacology, 103, 319–326.
Nakweti, R. K., Sinou, V., Luyindula, N. S., Sabot, F., & Franche, C. (2018).
Improvement of secondary metabolites from Phyllanthus odontadenius
against malaria by mutagenesis. International Journal of Pharmaceutical
Sciences and Research, 21, 1–14.
How to cite this article: Pierrot D, Sinou V, Bun S-S, et al.
Design and synthesis of simplified speciophylline analogues