V. Zhdankin, Tetrahedron Lett., 2011, 52, 1952; (i) J.-M. Chen, X.-
M. Zeng, K. Middleton, M. S. Yusubov and V. V. Zhdankin, Synlett,
2011, 1613.
adamantane analogue also worked well as an effective oxidant in terms
of the yield of the product 4a as well as the recovery, however, a high
amount of solvent was needed to dissolve the alternative reagent and to
make the homogeneous conditions. Thus, we specifically selected the
adamantane reagent 1 in this study.
8 (a) M. Mülbaier and A. Giannis, Angew. Chem., Int. Ed., 2001, 40, 4393;
(b) G. Sorg, A. Mengel, G. Jung and J. Rademann, Angew. Chem., Int.
Ed., 2001, 40, 4395; (c) P. Lecarpentier, S. Crosignani and B. Linclau,
Mol. Diversity, 2005, 9, 341; (d) Z. Lei, C. Denecker, S. Jegasothy, D.
C. Sherrington, N. K. H. Slater and A. J. Sutherland, Tetrahedron Lett.,
2003, 44, 1635; (e) W.-J. Chung, D.-K. Kim and Y.-S. Lee, Tetrahedron
Lett., 2003, 44, 9251; (f) J. Zhang, G. Jin, T. Qiu, Y. Wang and
H. Kuang, J. Chem. Res., 2010, 34, 194; (g) J. Zhang, D. Zhao, Y. Wang,
H. Kuang and H. Jia, J. Chem. Res., 2011, 35, 333; (h) T. Miura,
K. Nakashima, N. Tada and A. Itoh, Chem. Commun., 2011, 47, 1875.
9 See: T. Y. S. But, Y. Tashino, H. Togo and P. H. Toy, Org. Biomol. Chem.,
2005, 3, 970. The employed polymer-supported hypervalent iodine
reagent and nitroxyl radical should be recovered as a mixture. In addition,
an excess amount of the polymer reagent (2 equiv.) was necessary for
this oxidation due to the low reactivity of the reagents.
19 The measured solubilities of the tetraiodide 2, a reduced form of the ada-
mantane reagent 1, in several (mixed) solvents at 25 °C are as follows:
0.04 mg mL−1 (methanol); 0.08 mg mL−1 (isopropanol); 0.26 mg mL−1
(acetonitrile); 5.3 mg mL−1 (ethyl acetate); 6.0 mg mL−1 (acetone);
0.06 mg mL−1 (methanol–ethyl acetate = 10:1); 0.08 mg mL−1 (metha-
nol–ethyl acetate = 5:1); 0.42 mg mL−1 (methanol–ethyl acetate = 1:1).
20 We have confirmed the lack ofracemization of the product by comparing
the obtained chiral 4t to the authentic sample in ref. 11g.
21 CCDC 232058 contains crystallographic data of the adamantane
reagent 1.
22 The polymer-supported reagents of type I in Scheme 1 are not stable
under various oxidative conditions. The degradation of the resin often
occurred when they were repeatedly used, which caused a loss of activity
and lower overall recycling efficiency. See ref. 7a and 10.
23 (a) S. Weik, G. Nicholson, G. Jung and J. Rademann, Angew. Chem., Int.
Ed., 2001, 40, 1436.; For a review, see:R. A. Sheldon, I. W. C. S. Arends,
G.-J. ten Brink and A. Dijksman, Acc. Chem. Res., 2002, 35, 774.
24 For the use of recyclable TEMPO catalysts in alcohol oxidation with
PIDA, see ref. 9 and the following papers: (a) G. Pozzi, M. Cavazzini,
S. Quici, M. Benaglia and G. Dell’Anna, Org. Lett., 2004, 6, 441; (b) M.
A. Subhani, M. Beigi and P. Eilbracht, Adv. Synth. Catal., 2008, 350,
2903; (c) G. Pozzi, M. Cavazzini, O. Holczknecht, S. Quici and
I. Shepperson, Tetrahedron Lett., 2004, 45, 4249; (d) O. Holczknecht,
M. Cavazzini, S. Quici, I. Shepperson and G. Pozzi, Adv. Synth. Catal.,
2005, 347, 677; (e) W. Qian, E. Jin, W. Bao and Y. Zhang, Tetrahedron,
2006, 62, 556; (f) A. Fall, M. Sene, M. Gaye, G. Gomez and Y. Fall, Tet-
rahedron Lett., 2010, 51, 4501.
25 A combination of the ion-supported hypervalent iodine reagent and
TEMPO catalyst was reported for the oxidation of the alcohols in ref.
24e. However, the perfect separation of the two ion-supported reagent
and catalyst was difficult in principle as seen in ref. 9, and such a method
typically caused partial contamination of the reagent and catalyst during
their recovery. The recycling efficiency regarding the quantity of the
recovered iodine reagent, a result of its repeated use, and isolation of the
used TEMPO catalyst were not clearly determined. In addition, re-prep-
aration of the ion-supported iodine reagent could proceed in only a 78%
yield, which corresponds to a 22% loss of the reagent for the next overall
recycling step.
10 (a) H. Tohma, A. Maruyama, A. Maeda, T. Maegawa, T. Dohi, M. Shiro,
T. Morita and Y. Kita, Angew. Chem., Int. Ed., 2004, 43, 3595; Analogues
of 1: (b) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma,
M. Shiro and Y. Kita, Chem. Commun., 2005, 2205.
11 For reactions using the recyclable hypervalent iodine reagent 1, see:
(a) T. Dohi, A. Maruyama, M. Yoshimura, K. Morimoto, H. Tohma and
Y. Kita, Angew. Chem., Int. Ed., 2005, 44, 6193; (b) T. Dohi,
K. Morimoto, N. Takenaga, A. Maruyama and Y. Kita, Chem. Pharm.
Bull., 2006, 54, 1608; (c) T. Dohi, Yakugaku Zasshi, 2006, 126, 757;
(d) T. Dohi, K. Morimoto, N. Takenaga, A. Goto, A. Maruyama,
Y. Kiyono, H. Tohma and Y. Kita, J. Org. Chem., 2007, 72, 109;
(e) T. Dohi, A. Maruyama, Y. Minamitsuji, N. Takenaga and Y. Kita,
Chem. Commun., 2007, 1224; (f) T. Dohi, K. Morimoto, C. Ogawa,
H. Fujioka and Y. Kita, Chem. Pharm. Bull., 2009, 57, 710;
(g) N. Takenaga, A. Goto, M. Yoshimura, H. Fujioka, T. Dohi and
Y. Kita, Tetrahedron Lett., 2009, 50, 3227; (h) T. Dohi, Yakugaku Zasshi,
2009, 129, 1187; (i) T. Dohi, Chem. Pharm. Bull., 2010, 58, 135.
12 1,3,5-7-Tetrakis[4-(diacetoxyiodo)phenyl]adamantane 1 is now commer-
cially supplied from Wako Co. Ltd. (code No. 204-18473).
13 For reviews and accounts of organocatalytic oxidation of alcohols, see:
(a) S. Caron, R. W. Dugger, S. G. Ruggeri, J. A. Ragan and
D. H. B. Ripin, Chem. Rev., 2006, 106, 2943; (b) Future Trends for
Green Chemistry in the Pharmaceutical Industry, in Green Chemistry in
the Pharmaceutical Industry, eds. P. J. Dunn, A. S. Wells and
M. T. Williams, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim,
2010 Chapter 16 and references cited therein; (c) M. Uyanik and
K. Ishihara, Chem. Commun., 2009, 2086.
26 Commercially available from Aldrich Co. Ltd (catalog No. 576344,
120–230 mesh, extent of labeling: 0.7 mmol g−1 loading).
14 For reviews, see: (a) N. Merbouh, J. M. Bobbitt and C. Brueckner, Org.
Prep. Proced. Int., 2004, 36, 1; (b) Y. Iwabuchi, J. Synth. Org. Chem.
Jpn., 2008, 66, 1076; (c) R. Ciriminna and M. Pagliaro, Org. Process
Res. Dev., 2010, 14, 245; Recent reports: (d) C. Zhu, L. Ji and Y. Wei,
Monatsh. Chem., 2010, 141, 327; (e) C. Zhu, Y. Wei and L. Ji, Synth.
Commun., 2010, 40, 2057.
27 (a) N. Tsubokawa, T. Kimoto and T. Endo, J. Mol. Catal. A: Chem.,
1995, 101, 45; (b) A. Heeres, H. A. van Doren, K. F. Gotlieb and
I. P. Bleeker, Carbohydr. Res., 1997, 299, 221; (c) C. Bolm and T. Fey,
Chem. Commun., 1999, 1795; (d) R. Ciriminna, M. Pagliaro, J. Blum and
D. Avnir, Chem. Commun., 2000, 1441; (e) D. Brunel, F. Fajula,
J. B. Nagy, B. Deroide, M. J. Verhoef, L. Veum, J. A. Peters and H. van
Bekkum, Appl. Catal., A, 2001, 213, 73.
28 An alternative solution for improving the reaction rate is the use of the
more reactive nitroxyl radical instead of the silica-supported TEMPO 5.
Other insoluble TEMPO catalysts onto silica, such as SiliaCat® TEMPO
(M. Pagliaro, D. Avnir, J. Blum and G. Deganello, U.S. Patent, 6,797,773
B1, 2004; A. Michaud, G. Gingras, M. Morin, F. Beland, R. Ciriminna,
D. Avnir and M. Pagliaro, Org. Proc. Res. Dev., 2007, 11, 766.), was
applicable for the adamantane oxidant 1 to reduce the amount of the
catalyst.
29 Recently, an elegant method for catalytic use of the hypervalent iodine
reagent using a TEMPO-hybrid oxidant has been reported to produce car-
boxylic acids from primary alcohols. This method only produced car-
boxylic acids, rather than aldehydes. See: T. Yakura and A. Ozono, Adv.
Synth. Catal., 2011, 353, 855.
30 (a) H. Newman, Synthesis, 1972, 692; (b) E. B. Merkushev, N.
D. Simakhina and G. M. Koveshnikova, Synthesis, 1980, 486; (c) V.
R. Reichert and L. J. Mathias, Macromolecules, 1994, 27, 7015; (d) L.
J. Mathias, V. R. Reichert and A. V. G. Muir, Chem. Mater., 1993, 5, 4.
15 The PIDA/TEMPO combination: (a) A. De Mico, R. Margarita,
L. Parlanti, A. Vescovi and G. Piancatelli, J. Org. Chem., 1997, 62, 6974;
the
PIDA/2-azaadamantane
N-oxyl
(AZADO)
combination:
(b) M. Shibuya, M. Tomizawa, I. Suzuki and Y. Iwabuchi, J. Am. Chem.
Soc., 2006, 128, 8412 and references cited therein (c) M. Shibuya,
M. Tomizawa, Y. Sasano and Y. Iwabuchi, J. Org. Chem., 2009, 74,
4619. See also ref. 1.
16 For the TEMPO mediated oxidation of alcohols to aldehydes using
recyclable hypervalent iodine reagents, see: (a) K. Sakuratani and
H. Togo, Synthesis, 2003, 21; (b) C. I. Herrerias, T. Y. Zhang and
C.-J. Li, Tetrahedron Lett., 2006, 47, 13; (c) X.-Q. Li and C. Zhang, Syn-
thesis, 2009, 1163. See also ref. 3e.
17 The adamantane reagent 1 is readily soluble in chlorinated solvents
(dichloromethane, chloroform, etc.) as well as many polar solvents (for
examples, methanol, acetonitrile, and fluorinated alcohols). See our ref.
11.
18 We also evaluated the reactivity of a related reagent having the tetraphe-
nylmethane core in ref. 10b for the oxidation of the alcohol 3a. This
This journal is © The Royal Society of Chemistry 2012
Green Chem., 2012, 14, 1493–1501 | 1501