Catalysis Science & Technology
Page 10 of 11
DOI: 10.1039/C3CY00611E
5. X. Han, R. Zhou, B. Yue, X. Zheng, Catal. Lett., 2006, 109, 157.
60 6. H.ꢀD. Jakubke, H. Jeschkeit, Concise Encyclopedia Chemistry,
Walter de Gruyter & CO., Berlin,1993, Pp. 506.
7. J.A. Goodall, J. Lyall, R.J. McBride, J.B. Murray, G. Smith, J. Clin.
Pharm. Therap., 1980, 5, 323.
indicated the incorporation of the two cations in octahedral
coordination in the bruciteꢀlike sheets. The calcination of the
samples generated external NiO and Co3O4 oxides phases
amorphous alumina and perhaps cobalt and nickel. The TPR and
in situ XRD results for the calcined NiAl sample indicated a
strong interaction between nickel and alumina, which resulted in
limited sintering of evolved nickel nanoparticles in the highꢀ
temperature range of 600ꢀ800 °C (i.e., the crystallite size of Ni0
nanoparticles only slightly increased with temperature from 3.6 to
5
8. G.R. Bertolini, C.I. Cabello, M. Muñoz, M. Casella, D. Gazzoli, I.
65
Pettiti, G. Ferraris, J. Mol. Catal. A: Chem., 2013, 366, 109.
9. V.R. Landaeta, F. LópezꢀLinares, R. SánchezꢀDelgado, C. Bianchini,
F. Zanobini, M. Peruzzini, J. Mol. Catal. A: Chem., 2009, 301, 1.
10. A.M. Raspolli Galletti, L. Toniolo, C. Antonetti, C. Evangelisti, C.
Forte, Appl. Catal., A, 2012, 447-448, 49.
70 11. Y. Zhang, S. Liao, Y. Xu, D. Yu, Appl. Catal., A, 2000, 192, 247.
12. L. Zhang, J.M. Winterbottom, A.P. Boyes, S. Raymahasay, J Chem.
Technol. Biotechnol., 1998, 72, 264.
13. B.F. Machado, S. MoralesꢀTorres, A.F. PérezꢀCadenas, F.J.
MaldonadoꢀHódar, F. CarrascoꢀMarín, A.M.T. Silva, J.L.
10 5.8 nm). Likewise, a very strong interaction between cobalt and
alumina was evidenced for the CoAl sample, with no detectable
sintering of generated cobalt nanoparticles in the highꢀ
temperature range (i.e., the crystallite size of Co0 nanoparticles
was below the XRD detection limit (< 3 nm) even after reduction
15 at 800 °C). Materials derived from the studied HDL systems are
found to be performance catalysts for the hydrogenation of
cinnamaldehyde. Thus, at similar reduction temperature (i.e., 500
°C), NiAl catalyst presented much higher overall activity than
CoAl, though the activity of CoAl can be enhanced by reduction
20 at higher temperature (i.e., 700 °C). NiAl was highly
chemoselective for the hydrogenation of C=C bond (selectivity to
hydrocinnamaldehyde of ~95% at complete conversion of
cinnamaldehyde), whereas CoAl was chemoselective for the
hydrogenation of C=O bond (selectivity to cinnamyl alcohol of
25 ~60% at ~50% conversion of cinnamaldehyde), indicative of
compositionꢀdependent chemisorption modes of CNA molecules
on the catalytic active sites. Improvement in the chemoselectivity
of CoAl to cinnamyl alcohol (~70 % at ~50 % conversion of
cinnamaldehyde) was further achieved by reduction at 700 °C.
30 Finally, it can be concluded that effective and low cost
hydrogenation catalysts with chemoselective properties can be
prepared from takoviteꢀlike LDH precursors and related
materials.
75
Figueiredo, J.L. Faria, Appl. Catal., A, 2012, 425-426, 161.
14. A.K. Prashar, S. Mayadevi, R. Nandini Devi, Catal. Commun., 2012,
28, 42.
15. X. Zhang, Y.C. Guo, Z. Cheng Zhang, J.S. Gao, C.M. Xu, J. Catal.,
2012, 292, 213.
80 16. C. Milone, J. Catal., 2004, 222, 348.
17. J. Lenz, B.C. Campo, M. Alvarez, M.A. Volpe, J. Catal., 2009, 267,
50.
18. M.L. Toebes, F.F. Prinsloo, J.H. Bitter, A. Jos van Dillen, K.P. de
Jong, J. Catal., 2003, 214, 78.
85 19. A.ꢀM. Simion, T. Arimura, C. Simion, C. R. Chim., 2013, 16, 476.
20. B.M. Reddy, G.M. Kumar, I. Ganesh, A. Khan, J. Mol. Catal. A:
Chem. 2006, 248, 80.
21. H. Li, H. yang, H Li, J. catal., 2007, 251, 233.
22. W. Lin, H. Cheng, L. He, Y. Yu, F. Zhao, J. Catal., 2013, 303, 110.
90 23. R.S. Disselkamp, T.R. Hart, A.M. Williams, J.F. White, C.H. Peden,
Ultrasonics Sonochemistry, 2005, 12, 319.
24. K.J.A. Raj, M.G. Prakash, T. Elangovan, B. Viswanathan, Catal.
Lett., 2012, 142, 87.
25. K.ꢀY. Jao, K.ꢀW. Liu, Y.ꢀH. Yang, A.ꢀN. Ko, J. Chin. Chem. Soc.,
95
100
105
2009, 56, 885.
26. A. Ungureanu, D. Meloni, B. Dragoi, M. Casula, A. Chirieac, V.
Solinas, E. Dumitriu, Environ. Eng. Manag. J. 2010, 4, 461 ; B.
Dragoi, A. Ungureanu, D. Meloni, M. Casula, A. Chirieac, A. Sasu,
V. Solinas, E. Dumitriu, E. Environ. Eng. Manag. J. 2010, 9, 1203;
A. Chirieac, B. Dragoi, A. Ungureanu, A. Moscu, C. Rudolf, A.
Sasu, E. Dumitriu, Environ. Eng. Manag. J. 2012, 11, 47.
27. J. Barrault, A. Derouault, G. Courtois, J.M. Maissant, J.C. Dupin, C.
Guimon, H. Martinez, E. Dumitriu, Appl. Catal., A, 2004, 262 43.
28. J.T. Kloprogge and R.L. Frost, in Layered Double Hydroxides:
Present and Future, ed. V. Rives, Nova Science Publishers, New
York, 2001, pp. 164.
Acknowledgment
.
35 This work was partially supported by a grant of the Romanian
National Authority for Scientific Research, CNCS – UEFISCDI,
project number PNꢀIIꢀRUꢀTEꢀ2012ꢀ3ꢀ0403. C.R. acknowledges
the project CUANTUMDOC “Doctoral Studies for European
Performances in Research and Innovation” ID79407 funded by
40 the European Social Fund and Romanian Government.
29. Ger. Pat 2 024 282, 1970.
30. B. Dragoi, A. Ungureanu, A. Chirieac, V. Hulea, E. Dumitriu, Acta
Chim. Slov., 2010, 57, 677.
110 31. J. M. Fernandez, C. Barriga, M. A. Ulibarri, F. M. Labajos, V. Rives,
Chem. Mater. 1997, 9, 312.
Notes and references
32. F. Cavani, F. Trifirò, A. Vaccari, Catal. Today, 1991, 11, 173.
33. N.N. Greenwood, A. Earnshaw, Chemistry of the Elements, Reed
Educational and Professional Publishing Ltd., Oxford, 1997, pp.
a Technical University of Iasi, Faculty of Chemical Engineering and
Environmental Protection, 71A D. Mangeron Bvd, 700050, Iasi,
Romania,. Fax: +40 – 232 271 311; Tel: +40 ꢀ 232 278683; Eꢀmail:
115
1115, 1148.
34. M. Crivello, C. Perez, E. Herrero, G. Ghione, S. Casuscelli, E.
RodriguezꢀCastellon, Catal. Today 2005, 107, 215.
35. H. T. Gomes, P. Selvam, S. E. Dapurkarc, J. L. Figueiredo, J. L.
Faria, Microporous and Mesoporous Mater., 2005, 86, 287.
b Université de Poitiers, UMR 7285 CNRS, IC2MP, 4 Rue Michel Brunet,
86022 Poitiers, France
c Dipartimento di Chimica, Universita della Calabria, via P. Bucci
87036, Arcavacata di Rende (Cosenza), Italy
120 36. M. J. Holgado, V. Rives, M. S. San Román, Appl. Catal., A, 2001,
214, 219.
50
1. P. MäkiꢀArvela, J. Hajek, T. Salmi, D.Y. Murzin, Appl. Catal., A,
2005, 292, 1.
2. S. Handjani, E. Marceau, J. Blanchard, J.ꢀM. Krafft, M. Che, P.
MäkiꢀArvela, N. Kumar, J. Wärn, D.Y. Murzin, J. Catal., 2011,
37. Z. Sojka, F. BozonꢀVerduraz, M. Che, in Handbook of
Heterogeneous Catalysis, eds. G. Ertl, H. Knözinger F. Schüth J.
Weitkamp, WileyꢀVCH, Weinheim, 2nd edn., 2008, vol. 2, pp 1039
125
– 1046.
55
282, 228.
38. L.Y. Mostovaya, T.S. Petkevich, L.A. Kupcha, J. Appl. Spectrosc.,
3. P. Zucca, M. Littarru, A. Rescigno, E. Sanjust, Biosci. Biotechnol.
Biochem., 2009, 73, 1224..
4. US Pat. 5129951A, 1991.
1989, 51, 1298.
39. M. Herrero, P. Benito, F.M. Labajos, V. Rives, J. Solid State Chem.,
2007, 180, 873.
10 | Journal Name, [year], [vol], 00–00
This journal is © The Royal Society of Chemistry [year]