Inorganic Chemistry
Communication
Table 2. Cu+-CP 2/TEMPO-Catalyzed Aerobic Oxidative
Synthesis of 2-Arylbenzoxazoles
Department (14A150049), and Innovation Scientists and
Technicians Troop Construction Projects of Henan Province.
a
REFERENCES
■
(1) (a) Backvall, J. E. Modern Oxidation Methods; Wiley-VCH: Berlin,
̈
2004. (b) Tojo, G.; Fernan
́
dez, M. Oxidation of Alcohols to Aldehydes and
Ketones; Basic Reactions in Organic Synthesis; Springer: New York,
2010. (c) Parmeggiani, C.; Cardona, F. Green Chem. 2012, 14, 547−564.
(2) (a) Stahl, S. S. Angew. Chem., Int. Ed. 2004, 43, 3400−3420.
(b) Mallat, T.; Baiker, A. Chem. Rev. 2004, 104, 3037−3058.
(c) Gligorich, K. M.; Sigman, M. S. Chem. Commun. 2009, 26, 3854−
3856.
(3) (a) Punniyamurthy, T.; Rout, L. Coord. Chem. Rev. 2008, 252,
134−154. (b) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.;
Kozlowski, M. C. Chem. Rev. 2013, 113, 6234−6458.
(4) (a) Mase, N.; Mizumon, T.; Tatemoto, Y. Chem. Commun. 2011, 7,
2086−2088. (b) Hoover, J. M.; Stahl, S. S. J. Am. Chem. Soc. 2011, 133,
16901−16910. (c) Hoover, J. M.; Steves, J. E.; Stahl, S. S. Nat. Protoc.
2012, 7, 1161−1166. (d) Hoover, J. M.; Ryland, B. L.; Stahl, S. S. J. Am.
Chem. Soc. 2013, 135, 2357−2367. (e) Steves, J. E.; Stahl, S. S. J. Am.
Chem. Soc. 2013, 135, 15742−15745. (f) Cao, Q.; Dornan, L. M.; Rogan,
L.; Hughes, N. L.; Muldoon, M. J. Chem. Commun. 2014, 35, 4524−
4526. (g) Ryland, B. L.; Stahl, S. S. Angew. Chem., Int. Ed. 2014, 53,
8824−8836.
(5) (a) Yang, G. Y.; Zhu, W. M.; Zhang, P. K.; Xue, H. Z.; Wang, W.;
Tian, J. S.; Song, M. P. Adv. Synth. Catal. 2008, 350, 542−546.
(b) Herbert, M.; Montilla, F.; Galindo, A. Dalton Trans. 2010, 3, 900−
907.
a
Reaction conditions: 2-aminophenol (1 mmol), alcohol (1.2 mmol),
CsOH (1 mmol), Cu+-CP (0.02 mmol), TEMPO (0.1 mmol),
CH3CN (5 mL), air atmosphere, 80 °C, 12 h. Isolated yield.
b
structural biarylmethanols. The corresponding 2-biarylbenzox-
azoles 4f−4k were isolated in moderate-to-good yields (61−
81%). Finally, this protocol was found also to proceed
successfully with 4-heteroarylbenzyl alcohols, furnishing moder-
ate yields (64−76%). The detailed structure of 4h was confirmed
by single-crystal X-ray crystallography (Figure S2c in the SI).
In summary, we have synthesized two coordination polymers
containing the dinuclear CuII and tetranuclear CuI units. The
latter cuprocupric CP combined with TEMPO shows surprising
catalytic performnace in the aerobic oxidation of primary and
secondary alcohols under an air atmosphere. It is easy to
synthesize and can be recycled and reused for four runs without
any significant loss of catalytic activity. Moreover, this catalytic
system has been successfully applied to the synthesis of 2-
arylbenzoxazoles from benzyl alcohols and 2-aminophenol.
(6) (a) Wang, Z.; Chen, G.; Ding, K. L. Chem. Rev. 2009, 109, 322−
359. (b) Yoon, M.; Srirambalaji, R.; Kim, K. Chem. Rev. 2012, 112,
1196−1231. (c) Liu, J. W.; Chen, L. F.; Cui, H.; Zhang, J. Y.; Zhang, L.;
Su, C. Y. Chem. Soc. Rev. 2014, 43, 6011−6061.
(7) (a) Thomas, F.; Gellon, G.; Gautier-Luneau, I.; Saint-Aman, E.;
Pierre, J. L. Angew. Chem., Int. Ed. 2002, 41, 3047−3050. (b) Figiel, P. J.;
Leskela, M.; Repo, T. Adv. Synth. Catal. 2007, 349, 1173−1179.
̈
(c) Mahmudov, K. T.; Kopylovich, M. N.; Silva, M. F. C. G.; Figiel, P. J.;
Karabach, Y. Y.; Pombeiro, A. J. L. J. Mol. Catal. A: Chem. 2010, 318, 44−
50. (d) Ma, Z.; Wei, L. J.; Alegria, E. C. B. A.; Martins, L. M. D. R. S.;
Silva, M. F. C. G.; Pombeiro, A. J. L. Dalton Trans. 2014, 43, 4048−4050.
(8) (a) Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. ACS Catal. 2011,
1, 48−53. (b) Paul, M.; Adarsh, N. N.; Dastidar, P. Cryst. Growth Des.
2014, 14, 1331−1337. (c) Qi, Y.; Luan, Y.; Wu, J.; Peng, X.; Wang, G.
Chem.Eur. J. 2014, 21, 1589−1597.
(9) Li, L. C.; Matsuda, R.; Tanaka, I.; Sato, H.; Kanoo, P.; Jeon, H. J.;
Foo, M. L.; Wakamiya, A.; Murata, Y.; Kitagawa, S. J. Am. Chem. Soc.
2014, 136, 7543−7546.
ASSOCIATED CONTENT
* Supporting Information
X-ray crystallographic details in CIF format, experimental details,
spectral data, and additional figures and tables. This material is
■
(10) (a) Xu, C.; Li, H. M.; Xiao, Z. Q.; Wang, Z. Q.; Tang, S. F.; Ji, B.
M.; Hao, X. Q.; Song, M. P. Dalton Trans. 2014, 43, 10235−10247.
(b) Xu, C.; Li, H. M.; Yuan, X. E.; Xiao, Z. Q.; Wang, Z. Q.; Fu, W. J.; Ji,
B. M.; Hao, X. Q.; Song, M. P. Org. Biomol. Chem. 2014, 12, 3114−3122.
(c) Feng, X.; Feng, Y. Q.; Liu, L.; Wang, L. Y.; Song, H. L.; Ng, S. W.
Dalton Trans. 2013, 42, 7741−7754.
S
(11) (a) Zhan, S. Z.; Li, M.; Zhou, X. P.; Ni, J.; Huang, X. C.; Li, D.
Inorg. Chem. 2011, 50, 8879−8892. (b) Chen, Y. Q.; Li, G. R.; Chang, Z.;
Qu, Y. K.; Zhang, Y. H.; Bu, X. H. Chem. Sci. 2013, 4, 3678−3682.
(c) Baruah, B.; Gabriel, G. J.; Akbashev, M. J.; Booher, M. E. Langmuir
2013, 29, 4225−4234.
(12) (a) Cheng, J. K.; Chen, Y. B.; Wu, L.; Zhang, J.; Wen, Y. H.; Li, Z.
J.; Yao, Y. G. Inorg. Chem. 2005, 44, 3386−3388. (b) Chen, Y.; Li, J. L.;
Tong, G. S. M.; Lu, W.; Fu, W. F.; Lai, S. W.; Che, C. M. Chem. Sci. 2011,
2, 1509−1514.
(13) (a) Geigy, C. Patent DE2309614, 1973. (b) Teo, Y. C.; Riduan, S.
N.; Zhang, Y. G. Green Chem. 2013, 15, 2365−2387.
AUTHOR INFORMATION
■
Corresponding Authors
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
We are grateful to the National Natural Science Foundation of
China (Grants 21272110, 21273101, and 21171173), the
Foundation of the Program for Backbone Teachers in
Universities of Henan Province (Grants 2013GGJS151 and
2012GGJS158) and Tackle Key Problem of Science and
Technology Project of Henan Province, China (Grant
142102310483), Science Foundation of Henan Education
C
Inorg. Chem. XXXX, XXX, XXX−XXX