10.1002/anie.201801289
Angewandte Chemie International Edition
COMMUNICATION
Table 1 Selective hydrogenation of cinnamaldehyde by different catalysts.[a]
Reaction
Selectivity [%][b]
Entry
Catalysts
Conversion [%][b]
TOF [h-1][c]
B
C
-
D
-
1
MIL-101
0
-
-
2
FeP-CMP
0
-
-
-
-
3
MIL-101@FeP-CMPsponge
0
-
-
-
-
4
MIL-101@Pt
15.0
97.6
97.9
31.6
27.4
25.4
26.3
25.6
23.3
97.3
82.6
29.4
18.0
31.7
39.6
43.3
76.7
2.6
13.9
70.6
82.0
68.3
60.4
56.7
0
0
3.5
0
0
0
0
0
203.4
1516.1
1463.9
468.1
417.5
398.4
356.6
347.1
5
MIL-101@Pt@FeP-CMPsponge
MIL-101@Pt@FeP-CMP5.5
MIL-101@Pt@CMP9.2
MIL-101@Pt@CMP7.9
MIL-101@Pt@CMP3.1
MIL-101@Pt/1 mg FeP-CMP
MIL-101@Pt/2 mg FeP-CMP
6
7
8
9
10
11
A, cinnamaldehyde; B, cinnamyl alcohol; C, benzenepropanal; D, phenylpropanol. [a] Reaction condition: 2 ml solution of catalysts; the reaction requires 125 ul
triethylamine, 2.5 ul mesitylene and 0.4 mmol A, room temperature, 3 MPa H2 for 15 min. [b] Determined by GC. [c] TOF was calculated by the mole number of
converted A (mole number of total Pt)-1 h-1. The amount of Pt NPs of each catalyst was determined by ICP (Table S2).
2014, 4, 1340-1348; c) I. Cano, A. M. Chapman, A. Urakawa, P. W. N.
In summary, our work is the first report on integration of
MOFs, NPs and CMPs, which opens up a new avenue for the
construction of sandwich hybrids. By replacing MOFs shell with
Leeuwen, J. Am. Chem. Soc. 2014, 136, 2520-2528.
[3] a) B. Wu, H. Huang, J. Yang, N. Zheng, G. Fu, Angew. Chem. Int. Ed.
2012, 124, 3496-3499; b) K. R. Kahsar, D. K. Schwartz, J. W. Medlin, J.
FeP-CMP, we succeeded in modifying environmental of Pt NPs,
Am. Chem. Soc. 2014, 136, 520-526; c) M. Zhao, K. Yuan, Y. Wang, G. Li,
which not only changed the wettability to enrich A, but activated
J. Guo, L. Gu, W. Hu, H. Zhao, Z. Tang, Nature 2016, 539, 76-80.
C=O bond to improve selectivity to B. TOF of hydrogenation
[4] a) H. Furukawa, K. E. Cordova, M. O’Keeffe, O. M. Yaghi, Science 2013,
over MIL-101@Pt@FeP-CMPsponge reached as high as 1516.1 h-
341, 1-12; b) L. Chen, R. Luque, Y. Li, Chem. Soc. Rev. 2017, 46, 4614-
1 and kept 97.3% selectivity towards B at 97.6% conversion of A.
4630; c) G. Lu, S. Li, Z. Guo, O. K. Farha, B. G. Hauser, X. Qi, Y. Wang, X.
Wang, S. Han, X. Liu, J. S. DuChene, H. Zhang, Q. Zhang, X. Chen, J. Ma,
Hence,
fabrication
of
MOFs@NPs@FeP-CMPs
S. C. J. Loo, W. D. Wei, Y. Yang, J. T. Hupp, F. Huo, Nat. Chem. 2012, 4,
310-316.
heteroarchitectures may prove to be effective when targeting
important but challenging reactions. We anticipate that this
simple but ingenious design will provide versatile material
platforms for other kinds of catalysts, aiming at resolving the
phase separation problem and also achieve multiple functions in
some other practical applications, such as energy, environment
and so on.[14]
[5] a) D. J. Xiao, J. Oktawiec, P. J. Milner, J. R. Long, J. Am. Chem. Soc.
2016, 138, 14371-14379; b) G. Huang, Q. Yang, Q. Xu, S. Yu, H. Long,
Angew. Chem. Int. Ed. 2016, 55, 7379-7383; c) C. Guo, Y. Zheng, J. Ran,
F. Xie, M. Jaroniec, S. Z. Qiao, Angew. Chem. Int. Ed. 2017, 56, 8539-
8543.
[6] a) J. Chun, S. Kang, N. Park, E. J. Park, X. Jin, K. Kim, H. O. Seo, S. M.
Lee, H. J. Kim, W. H. Kwon, Y. Park, J. M. Kim, Y. D. Kim, S. U. Son, J.
Am. Chem. Soc. 2014, 136, 6786-6789; b) X. Qiu, W. Zhong, C. Bai, Y. Li,
J. Am. Chem. Soc. 2016, 138, 1138-1141; c) A. Aijaz, A. Karkamkar, Y. J.
Choi, N. Tsumori, E. RÖnnebro, T. Autrey, H. Shioyama, Q. Xu, J. Am.
Chem. Soc. 2012, 134, 13926-13929.
Experimental Section
The experimental details included in Supporting Information.
[7] a) L. Chen, Y. Yang, D. Jiang, J. Am. Chem. Soc. 2010, 132, 9138-9143;
b) L. Chen, Y. Yang, Z. Guo, D. Jiang, Adv. Mater. 2011, 23, 3149-3154.
[8] a) T. Hasell, C. D. Wood, R. Clowes, J. T. A. Jones, Y. Z. Khimyak, D. J.
Adams, A. I. Cooper, Chem. Mater. 2010, 22, 557-564; b) P. Zhang, Z.
Weng, J. Guo, C. Wang, Chem. Mater. 2011, 23, 5243-5249; c) S.
Ogasawara, S. Kato, J. Am. Chem. Soc. 2010, 132, 4608-4613.
[9] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I.
Margiolaki, Science 2005, 309, 2040-2042.
Acknowledgements
The authors are grateful for the financial support from Ministry of
Science and Technology of China (Grants 2016YFB0401100,
2017YFA0204503), National Natural Science Foundation of
China (51633006, 51725304, 91433115, 51733004), and the
Strategic Priority Research Program of Chinese Academy of
Sciences (XDB12030300, XDB12010400, XDB12020200).
[10]S. M. Cohen, Chem. Sci. 2010, 1, 32-36.
[11]T. Teranishi, M. Hosoe, T. Tanaka, M. Miyake, J. Phys. Chem. B 1999,
103, 3818-3827.
[12]K. Leus, T. Bogaerts, J. D. Decker, H. Depauw, K. Hendrickx, H. Vrielinck,
V. V. Speybroeck, P. V. D. Voort, Microporous Mesoporous Mater. 2016,
226, 110-116.
Keywords: metal-organic frameworks • conjugated mesoporous
polymers • nanoparticles • hydrophobicity • hydrogenation
[13]J. K. Nørskov, T. Bligarrd, A. Logadottir, J. R. Kitchin, J. G. Chen, S.
Pandelov, U. Stimming, J. Electrochem. Soc. 2005, 152, J23-J26.
[14]a) J. Fu, S. Das, G. Xing, T. Ben, V. Valtchev, S. Qiu, J. Am. Chem. Soc.
2016, 138, 7673-7680; b) M. Liu, S. Wang, L. Jiang, Nat. Rev. Mater. 2017,
2, 1-17; c) J. Liu, D. Zhu, C. Guo, A. Vasileff, S. Z. Qiao, Adv. Energy
Mater. 2017, 7, 1700518.
[1] P. Gallezot, D. Richard, Cat. Rev. Sci. Eng. 1998, 40, 81-126.
[2] a) M. Tamura, D. Yonezawa, T. Oshino, Y. Nakagawa, K. Tomishige, ACS
Catal. 2017, 7, 5103-5111; b) Z. Guo, C. Xiao, R. V. Maligal-Ganesh, L.
Zhou, T. W. Goh, X. Li, D. Tesfagaber, A. Thiel, W. Huang, ACS Catal.
This article is protected by copyright. All rights reserved.