LETTER
The Ru-Cu-Al-Hydrotalcite-Catalysed Oxidation of Alcohols to Aldehydes or Ketones
871
ed supported oxidants15,16 and Ru-Co-HT catalysts, with
8
Table 2 Oxidation of cinnamayl alcohol to cinnamaldehyde with
the recycled Ru-Cu hydrotalcite stored under different environments
the advantage over the latter that aliphatic primary alco-
hols are also oxidised in very high yield. Advantages over
clayfen include a more general applicability, easier syn-
thesis and indefinite stability.
17
Acknowledgement
We thank the NRF, URF and NMT Electrodes for support and Mar-
tin Onani for helping to prepare this manuscript.
References and Notes
(
(
1) Adams, R. D. Polyhedron 1988, 7, 2251-2252.
2) Miessler, G. L.; Tarr, D. A. Inorganic Chemistry, Prentice-
Hall: New Jersey, 1999; p 504.
(
(
(
3) Minmoun, H.; Malmaison, R.; de-Seine, H. German patent
1
979, 29 20 678.
4) Cavani, C.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11,
73-301.
1
5) Kaneda,K.; Ueno, S.; Imanaka, T. J. Chem. Soc., Chem.
Commun. 1994, 797-798.
values. The presence of both sharp and diffuse non-basal
reflections indicates a partially disordered structure. The
basal spacing was determined to be 7.56 Å vs. 7.92 Å re-
(
(
6) Friedrich, H. B. Platinum Metals Rev. 1999, 43, 94-102.
7) Dijksman, A.; Arends, I.W.C.E.; Shelden, R.A. Chem.
Commun. 1999, 1591-1592.
8
ported for a Ru-Mg hydrotalcite.
(
(
8) Matsushita, T.; Ebitani, K.; Kaneda, K. Chem. Commun.
1999, 265-266.
XPS measurements on a newly prepared catalyst showed
binding energies of 282.1 eV and 932.8 eV due to Ru(VI)
and Cu(II), respectively. Measurements on a recycled cat-
alyst showed a binding energy of 282.1 eV due to Ru(VI),
whilst XPS measurements on a spent catalyst (after a sto-
ichiometric reaction with cinnamyl alcohol to give cinna- (11) Herrmann, W. A.; Kratzer, R. M.; Blümel, J.; Friedrich, H. B.;
maldehyde in 100% yield) showed binding energies of
9) Markó, I.E.; Gautier, A.; Tsukazaki, M.; Llobet, A.; Mir-
Plantalech, E.; Urch, C.; Brown, S.M. Angew. Chem., Int. Ed.
1999, 38, 1960-1962.
th
(
10) Hazards in the chemical laboratory, 5 Edn., Luxon, S. G.
Ed.; Royal Society of Chemistry: Cambridge, 1992; p 407.
Fischer, R. W.; Apperley, D. C.; Mink, J.; Berkesi, O. J. Mol.
Catal. A 1997, 120, 197-205.
2
82.2 eV, 933.0 eV and 935.3 eV, corresponding to
(
(
12) Müller, P.; Godoy, J. Tetrahedron Lett. 1981, 22, 2361-2364.
13) Moulder, J.; Stickle, W.S.; Sobol, P.E.; Bomben K.D. in
Handbook of X-Ray Photoelectron Spectroscopy, Perkin
Elmer Corp., 1992.
1
3
Ru(VI), Cu(II) and Cu(0). This suggests that copper is
involved in the oxidation of Ru(III) to Ru(VI) in the syn-
thesis of the hydrotalcite and in the regeneration of the ac-
tive catalytic species, Ru(VI), as shown in the scheme. (14) Lee, D.G.; Congson, L.N.; Spitzer, U.A.; Olson, M.E. Can. J.
The scheme is further supported by the observation that
the catalyst acts as a two electron oxidant, since it con-
verts cyclobutanol to cyclobutanone.1
Chem. 1984, 62, 1835-1839.
15) Friedrich, H. B.; Singh, N. Tetrahedron Lett. 2000, 41, 3971-
(
4
3974.
(
16) Hinzen, B.; Ley, S. V. J. Chem. Soc., Perkin Trans.1 1997,
In conclusion, the Ru-Cu-HT catalyst was found to be
1907-1908.
easy to synthesise, stable, recyclable and to oxidise effi- (17) Cornelis, A; Laszlo, R. Synthesis 1985, 909-919.
ciently and selectively aliphatic, allylic and aromatic alco-
hols to their corresponding oxidation products under mild
conditions. The catalyst compares well to recently report-
Article Identifier:
1
437-2096,E;2001,0,06,0869,0871,ftx,en;D07501ST.pdf
Synlett 2001, No. 6, 869–871 ISSN 0936-5214 © Thieme Stuttgart · New York