Angewandte Chemie International Edition
10.1002/anie.201912455
RESEARCH ARTICLE
Suzuki, J. Xie, O. Tomit, D. J. Martin, M. Higashi, D. Kong, R. Abe, J.
Tang, Chem. Rev. 2016, 116, 9664–9682; d) G. J. Hedley, A. Ruseckas,
D. W. Samuel, Chem. Rev. 2017, 117, 796–837.
obtained so far by more expanses rare Earth-metal complexes
(
entry 7). It should be noted that this type of reactions can be
catalysed only by precious Ir–complexes29 or trough consecutive
visible light–induced electron transfer processes.33 Thanks to
their ambivalent oxidative/reductive nature the NT photocatalysts
[
[
2]
3]
a) D. M. Schultz, T. P. Yoon, Science, 2014, 343, 1239176–1239184; b)
D. Ravelli, D. Dondi, M. Fagnoni, A. Albini, Chem. Soc. Rev. 2009, 38,
1999–2011; c) L. Buzzetti, G. E. M. Crisenza, P. Melchiorre, Angew.
Chem. Int. Ed. 2019, 58, 3730–374; d) Angew. Chem. Int. Ed. 2012, 51,
6828–6838; e) Acc. Chem. Res. 2016, 49, 1911–1923.
represent a new convenient option also towards the development
of light-driven reductive methods.34
a) J. C. Theriot, C. H. Lim, H. Yang, M. D. Ryan, C. B. Musgrave, G. M.
Miyake, Science, 2016, 352, 1082–1086; b) N. Corrigan, S. Shanmugam,
J. Xu, C. Boyer, Chem. Soc. Rev. 2016, 45, 6165–6212.
Conclusion
[4]
a) L. Marzo, S. K. Pagire, O. Reiser, B. König, Angew. Chem. Int. Ed.
2
018, 57, 10034–10072; Angew. Chem. 2018, 130, 10188–10228; b) C.
Michelin, N. Hoffmann, Curr. Opin. Green Sustain. Chem. 2018, 10, 40–
5; c) T. Bach, P. Hehn, Angew. Chem. Int. Ed. 2011, 50, 1000–1045;
In conclusion, we have identified naphtochromenones as a new
class of extremely versatile organic PCs. In fact, their wide redox
window (up to 3.22 eV), is well distributed across highly energetic
exited states potentials ranging from –1.77 V to 1.65 V. This
unique feature of the NT photocatalysts ensures the access to
both thermodynamically demanding oxidative and reductive light–
driven transformations. Additional advantages are represented by
the simple synthetic route developed, which allowed gram scale
synthesis of the PCs (up to 2.88 g), making them affordable and
sustainable. Furthermore, the NT core can be easily tuned, and
the PCs can be recovered and reused maintaining comparable
catalytic performances over four runs. Structure–property
relationship, supported by DFT calculations, allows further uses
towards the intended purpose. Finally, the synthetic potential of
their dualistic properties was proven with five highly diverse
photoreactions, characterised by strong and opposite
thermodynamic requirements (from Eox = 1.46 to Ered = –1.96 V),
thus covering a vast applications spectrum. Interestingly, NTs
outperformed diverse well–established PCs including eosin Y,
acridinium, Ru– and Ir–complexes, while efficiently catalysing
unprecedented Povarov-type reactions with electron-deficient
dimethylanilines 6b-d and photo-dehalogenation of benzyl
chlorides 22c (up to 70% and 51% yield, respectively). The
merging of a redox window up to 3.22 eV, with an ambivalent
oxidative/reductive nature, guarantees to NT photocatalysts the
ability to unlocking previously inaccessible light–driven reactivity.
Hence, their use will impart new directions to the growing field of
photocatalysis.
4
Angew. Chem. 2011, 123, 1032–1077.
[
5]
a) C. K. Prier, D. A. Rankic, D. W. C. MacMillan, Chem. Rev. 2013, 113,
5
322–5363; b) A. Hossain, A. Bhattacharyya, O. Reiser, Science, 2019,
64, eaav9713; c) M. H. Shaw, J. D. A. Twilton, D. W. C. MacMillan J.
3
Org. Chem. 2016, 81, 6898–6926; d) R. C. McAtee, E. J. McClain, C. R.
J. Stephenson, Trends in Chemistry, 2019, 1, 111–125; e) N. A. Romero,
D. A. Nicewicz, Chem. Rev. 2016, 116, 10075–100166; f) K. L. Skubi, T.
R. Blum, T. P. Yoon, Chem. Rev. 2016, 116, 10035–10074; g) D. P. Haria,
B. König, Chem. Commun., 2014, 50, 6688–6699.
[
6]
For selected recent examples see: a) R. M. Pearson, C.‐H. Lim, S. M.
Sartor, M. D. Ryan, H. Yang, N. H. Damrauer, G. M. Miyake. Chem. Eur.
J. 2017, 23, 10962–10968; b) C. Bottecchia, R. Martín, I. Abdiaj, E.
Crovini, J. Alcazar, J. Orduna, M. J. Blesa, J. R. Carillo, P. Prieto, T. Noël,
Adv. Synth. Catal. 2019, 361, 945–950.
[7]
For a recent example see e.g.: B. D. Ravetz, A. B. Pun, E. M. Churchill,
D. N. Congreve, T. Rovis, L. M. Campos, Nature 2019, 565, 343–346.
a) B. G. McCarthy, R. M. Pearson, C.−H. Lim, S. M. Sartor, N. H.
Damrauer, G. M. Miyake, J. Am. Chem. Soc. 2018, 140, 5088−5101; b)
M. Kim, S.–J. Yoon, S. H. Han, R. Ansari, J. Kieffer, J. Y. Lee, J. Kim,
Chem. Eur. J. 2019, 25, 1829–1834; c) A. Joshi–Pangu, F. Lévesque, H.
G. Roth, S. F. Oliver, L.–C. Campeau, D. A. Nicewicz, D. A. DiRocco, J.
Org. Chem. 2016, 81, 7244–7249; d) E. Alfonzo, F. S. Alfonso, A. B.
Beeler, Org. Lett. 2017, 19, 2989–2992; e) E. Speckmeier, T. G. Fischer,
K. Zeitler, J. Am. Chem. Soc. 2018, 140, 45, 15353–15365; f) J. Lu, B.
Pattengale, Q. Liu, S. Yang, W. Shi, S. Li, J. Huang, J. Zhang, J. Am.
Chem. Soc. 2018, 140, 45, 13719–13725; g) F. Le Vaillant, M. Garreau,
S. Nicolai, G. Gryn’ova, C. Corminboeuf, J. Waser, Chem. Sci. 2018, 9,
[
8]
5883–5889; h) M. Garreau, F. Le Vaillant, J. Waser, Angew. Chem. Int.
Ed. 2019, 58, 8182–8186.
[
[
9]
a) J. Mateos, A. Cherubini–Celli, T. Carofiglio, M. Bonchio, N. Marino, X.
Companyó, L. Dell’Amico, Chem. Commun. 2018, 54, 6820–6823; b) J.
Mateos, N. Meneghini, M. Bonchio, N. Marino, T. Carofiglio, X.
Companyó, L. Dell’Amico, Beilstein J. Org. Chem. 2018, 14, 2418–2424.
Acknowledgements
10] a) L. Dell’Amico, A. Vega–Peñaloza, S. Cuadros, P. Melchiorre, Angew.
Chem. Int. Ed. 2016, 55, 3313–3317; Angew. Chem. 2016, 128, 3374 –
This work was supported by the CariParo Foundation with
the AMYCORES starting grant to L.D.. A. V.–P. thanks the
Seal of Excellence @unipd PLACARD for a fellowship. AS
thanks the University of Padova for the P–DiSC
3
378; b) L. Dell’Amico, V. M. Fernández–Alvarez, F. Maseras, P.
Melchiorre, Angew. Chem. Int. Ed. 2017, 56, 3304–3308; Angew. Chem.
2017, 129, 3352–3356; c) S. Cuadros, L. Dell’Amico, P. Melchiorre,
Angew. Chem. Int. Ed. 2017, 56, 11875–11879.
[
11] For the photochemistry of benzophenone and its derivatives see: a) D.
Ravelli, S. Protti, M. Fagnoni, Chem. Rev. 2016, 116, 9850–9913. For
the photochemistry of coumarins see e.g.: b) A. Gualandi, G. Rodeghiero,
E. Dell Rocca, F. Bertoni, M. Marchini, R. Perciaccante, T. P. Jansen, P.
Ceroni, P. G. Cozzi, Chem. Commun. 2018, 51, 10044–10047.
12] The latter oxidative aromatization step is driven by the presence of
oxygen. Control experiments performed under a nitrogen atmosphere
furnished only the elimination product of type 4.
#10BIRD2018–UNIPD. Stefano Mercanzin, Mauro
Meneghetti and Alberto Doimo are acknowledged for
technical assistance.
[
[
Keywords: photoredox catalysis • organic catalyst • synthetic
methods • light–driven reactions • radical chemistry
13] This functional allowed a good match of the calculated and experimental
absorption spectra. See: T.M. McCormick, C. R. Bridges, E. I. Carrera,
P. M. DiCarmine, G. L. Gibson, J. Hollinger, L. M. Kozycz, D. S. Seferos,
Macromolecules, 2013, 46, 10, 3879–3886.
[
1]
a) L. A. Weinstein, J. Loomis, B. Bhatia, D. M. Bierman, E. N. Wang, G.
Chen, Chem. Rev. 2015, 115, 12797–12838; b) J. Gong, C. Li, M. R.
Wasielewski, Chem. Soc. Rev. 2019, 48, 1862–1864; c) Y. Wang, H.
This article is protected by copyright. All rights reserved.