3 J. P. Collman, J. T. McDevitt, G. T. Yee, C. R. Leidner,
L. G. McCullough, W. A. Little and J. B. Torrance, Proc. Natl.
Acad. Sci. U. S. A., 1986, 83, 4581.
4 J. Martinsen, J. L. Stanton, R. L. Greene, J. Tanaka, B. M. Hoffman
and J. A. Ibers, J. Am. Chem. Soc., 1985, 107, 6915.
Similar results were obtained for CO, but not for O2, which is not
able to bridge neighbouring porphyrin molecules in a stable way,
while CO2 forces a non-linear geometry that is not compatible
with our observations. Finally, although CO shows a similar
behaviour as that shown by water, its scarcity in the atmosphere
renders it an unlikely candidate to explain our observations.
Moreover, the presence of CO can usually be recognized by
a characteristic peak in the C1s spectra at about 286.7 eV, which
is absent in our measurements.
ꢁ
5 P. Ballester, A. Costa, A. M. Castilla, P. M. Deya, A. Frontera,
R. M. Gomila and C. A. Hunter, Chem.–Eur. J., 2005, 11, 2196.
6 R. F. Kelley, W. S. Shin, B. Rybtchinski, L. E. Sinks and
M. R. Wasielewski, J. Am. Chem. Soc., 2007, 129, 3173.
7 M. C. Lensen, J. A. A. W. Elemans, S. J. T. van Dingenen,
J. W. Gerritsen, S. Speller, A. E. Rowan and R. J. M. Nolte,
Chem.–Eur. J., 2007, 13, 7948.
Based upon the theoretical models described above we propose
the structure depicted in Fig. 4a for the observed nanorods. Each
porphyrin molecule is rotated by 45ꢂ around its C4 axis with
respect to its neighbours. The ZnTMP molecules are linked to
each other through coordination with bridging water molecules.
Similar structures are known to occur in solution for a variety of
metaloporphyrins and phthalocyanines with different ligands
acting as linkers. An STM image of such a tube can be expected
to show bright protrusions at the position of the topmost mesityl
groups, and lighter protrusions for the remaining mesityl groups
pointing towards the top of the tube. This description fits well
with the observed STM images (Fig. 4b).
8 T. J. Marks, Science, 1985, 227, 881.
9 P. N. Taylor and H. L. Anderson, J. Am. Chem. Soc., 1999, 121,
11538.
10 J. V. Barth, Surf. Sci., 2009, 603, 1533.
11 J. V. Barth, Annu. Rev. Phys. Chem., 2007, 58, 375.
12 J. S. Lindsey and R. W. Wagner, J. Org. Chem., 1989, 54, 828.
13 M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria,
M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vreven,
K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi,
V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega,
G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota,
R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda,
O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian,
J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts,
R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli,
J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth,
P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich,
A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick,
A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz,
Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov,
G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin,
D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng,
A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson,
W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03,
Revision E.02.
Conclusions
In this paper we describe the synthesis of shish-kebab type
coordination polymers of porphyrin derivatives on solid
surfaces. The polymers have a straight conformation for over
hundreds of nanometres. We suggest that the axial ligands that
bridge the Zn atoms are water molecules that can bind to the
upper and lower Zn atoms via the lone pairs at the oxygen atom,
but other possibilities cannot be excluded. The synthesis of
individual molecular wires on solid surfaces also opens up the
possibility of probing their conductivity one by one, obtaining
thereby information about the real internal conduction mecha-
nisms along the rod spinal cord, not mixed up with grain
boundary resistance. Moreover, a purely 1D sequence of zinc
and oxygen atoms might show fascinating photovoltaic
behaviour.
14 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77,
3865.
15 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 270.
16 P. J. Hay and W. R. Wadt, J. Chem. Phys., 1985, 82, 299.
17 W. R. Wadt and P. J. Hay, J. Chem. Phys., 1985, 82, 284.
ꢀ
18 J. M. Soler, E. Artacho, J. D. Gale, A. Garcıa, J. Junquera,
P. Ordejon and D. Sanchez-Portal, The SIESTA Method for ab
ꢀ
ꢀ
Initio Order-N Materials Simulation, 2002.
19 W. Auwarter, F. Klappenberger, A. Weber-Bargioni, A. Schiffrin,
T. Strunskus, C. Woll, Y. Pennec, A. Riemann and J. V. Barth,
J. Am. Chem. Soc., 2007, 129, 11279.
ꢀ
20 D. Ecija, M. Trelka, C. Urban, R. Otero, R. Miranda, P. de Mendoza,
ꢀ
ꢀ
A. M. Echavarren, E. Mateo-Martı, C. Rogero, J. A. Martın-Gago
and J. M. Gallego, J. Phys. Chem. C, 2008, 112, 8988.
21 K. Flechtner, A. Kretschmann, L. R. Bradshaw, M.- Walz,
H.- Steinruck and J. M. Gottfried, J. Phys. Chem. C, 2007, 111, 5821.
22 L. Grill, M. Dyer, L. Lafferentz, M. Persson, M. V. Peters and
S. Hecht, Nat. Nanotechnol., 2007, 2, 687.
Acknowledgements
This work has been supported by the MICINN of Spain
(MAT2009-13488, FIS2010-18847, FIS2010-15127, FIS2010-
19609-C02-01, ACI2008-0777, CTQ2010-17006 MAT2010-
17720), Comunidad de Madrid (Nanobiomagnet S2009/MAT-
1726), Gobierno vasco (IT-366-07), CONSOLIDER-INGENIO
2010 on Molecular Nanoscience (CSD2007-00010) and Nano-
select (CSD2007-41); and European Union (SMALL PITN-GA-
2009-23884 and MONET MEST-CT-2005-020908). R.O. thanks
the Spanish Ministry for Science and Innovation for salary
23 T. A. Jung, R. R. Schlittler and J. K. Gimzewski, Nature, 1997, 386,
696.
24 M. I. Veld, P. Iavicoli, S. Haq, D. B. Amabilino and R. Raval, Chem.
Commun., 2008, 1536.
25 S. Maier, L. Fendt, L. Zimmerli, T. Glatzel, O. Pfeiffer, F. Diederich
and E. Meyer, Small, 2008, 4, 1115.
26 H. Song and W. R. Scheidt, Inorg. Chim. Acta, 1990, 173, 37.
ꢀ
27 R. Gonzalez-Moreno, C. Sanchez-Sanchez, M. Trelka, R. Otero,
A. Cossaro, A. Verdini, L. Floreano, M. Ruiz-Bermejo, A. Garcıa-
ꢀ
ꢀ
ꢀ
ꢀ
support within the Ramon & Cajal Program. We thank Mare
ꢀ
Lekue, J. A. Martın-Gago and C. Rogero, J. Phys. Chem. C, 2011,
115, 6849.
28 A. Kretschmann, M. Walz, K. Flechtner, H. Steinruck and
J. M. Gottfried, Chem. Commun., 2007, 568.
Nostrum BSC and CCC-UAM for computer time.
29 F. J. Williams, O. P. H. Vaughan, K. J. Knox, N. Bampos and
R. M. Lambert, Chem. Commun., 2004, 1688.
Notes and references
30 O. P. H. Vaughan, F. J. Williams, N. Bampos and R. M. Lambert,
Angew. Chem., Int. Ed., 2006, 45, 3779.
1 M. Hanack and M. Lang, Adv. Mater., 1994, 6, 819.
2 C. Janiak, Dalton Trans., 2003, 2781.
This journal is ª The Royal Society of Chemistry 2011
CrystEngComm, 2011, 13, 5591–5595 | 5595