Letters
J ournal of Medicinal Chemistry, 2004, Vol. 47, No. 6 1327
(7) Miller, C. G.; Kukral, A. M.; Miller, J . L.; Movva, N. R. pepM is
an essential gene in Salmonella typhimurium. J . Bacteriol. 1989,
171, 5215-5217.
(8) Bradshaw, R. A.; Yi, E. Methionine aminopeptidases and an-
giogenesis. Essays Biochem. 2002, 38, 65-78.
interaction with H178 is sufficiently compensated by a
strong hydrogen bond with the side chain of H79.
In our search for inhibitors of SaMetAP I, we have
identified two series of compounds containing a keto
group, which are the keto heterocycle and the aminoke-
tone inhibitors. Trifluoroketones, R-keto esters, and
R-diketones, which are potent inhibitors of several
proteases, were reported to hydrate in aqueous DMSO
solution because of the electron-withdrawing effect of
the group neighboring the ketone moiety.19-23 Here, the
ketone group of the inhibitors 1 and 2 is not hydrated
in an aqueous DMSO solution31 (data not shown);
however, the compounds form an enzyme-catalyzed
transition-state analogue, mimicking that for amide
bond hydrolysis of substrates.
The activated water (or hydroxide ion) located be-
tween both metal ions attacks the keto group of the
inhibitors, which is further transformed into a tetrahe-
dral intermediate. Although isothermal titration calo-
rimetry studies on EcMetAP has indicated that the
active site can accommodate three cobalt ions, one with
high and two with low affinity,34 the stabilization of the
keto heterocycle transition-state analogues by a third
metal ion is questionnable because our experimental
conditions include 10 mM Co2+, a concentration that
certainly differs from the biological conditions.16,32 This
stabilization might as well occur through a network of
solvent molecules as observed for the aminoketone
inhibitor 3.
(9) Ingber, D.; Fujita, T.; Kishimoto, S.; Sudo, K.; Kanamaru, T.;
Brem, H.; Folkman, J . Synthetic analogues of fumagillin that
inhibit angiogenesis and suppress tumour growth. Nature 1990,
348, 555-557.
(10) Sin, N.; Meng, L.; Wang, M. Q.; Wen, J . J .; Bornmann, W. G.;
Crews, C. M. The anti-angiogenic agent fumagillin covalently
binds and inhibits the methionine aminopeptidase, MetAP-2.
Proc. Natl. Acad. Sci. U.S.A. 1997, 94, 6099-6103.
(11) Lowther, W. T.; Orville, A. M.; Madden, D. T.; Lim, S.; Rich, D.
H.; Matthews, B. W. Escherichia coli methionine aminopepti-
dase: implications of crystallographic analyses of the native,
mutant, and inhibited enzymes for the mechanism of catalysis.
Biochemistry 1999, 38, 7678-7688.
(12) Oefner, C.; Douangamath, A.; D’Arcy, A.; Haefeli, S.; Mareque,
D.; MacSweeney, A.; Padilla, J .; Pierau, S.; Schulz, H.; Thor-
mann, M.; Wadman, S.; Dale, G. E. The 1.15 Angstrom crystal
structure of the staphylococcus aureus methionyl-aminopepti-
dase and complexes with triazole based inhibitors. J . Mol. Biol.
2003, 332, 13-21.
(13) Lowther, W. T.; Zhang, Y.; Sampson, P. B.; Honek, J . F.;
Matthews, B. W. Insights into the mechanism of Escherichia
coli methionine aminopeptidase from the structural analysis of
reaction products and phosphorus-based transition-state ana-
logues. Biochemistry 1999, 38, 14810-14819.
(14) Li, J . Y.; Chen, L. L.; Cui, Y. M.; Luo, Q. L.; Li, J .; Nan, F. J .;
Ye, Q. Z. Specificity for inhibitors of metal-substituted methion-
ine aminopeptidase. Biochem. Biophys. Res. Commun. 2003, 307,
172-179.
(15) D’souza, V. M.; Holz, R. C. The methionyl aminopeptidase from
Escherichia coli can function as an iron(II) enzyme. Biochemistry
1999, 38, 11079-11085.
(16) D’souza, V. M.; Swierczek, S. I.; Cosper, N. J .; Meng, L.; Ruebush,
S.; Copik, A. J .; Scott, R. A.; Holz, R. C. Kinetic and structural
characterization of manganese(II)-loaded methionyl aminopep-
tidases. Biochemistry 2002, 41, 13096-13105.
(17) Walker, K. W.; Bradshaw, R. A. Yeast methionine aminopepti-
dase I can utilize either Zn2+ or Co2+ as a cofactor: a case of
mistaken identity? Protein Sci. 1998, 7, 2684-2687.
(18) Wang, J .; Sheppard, G. S.; Lou, P.; Kawai, M.; Park, C.; Egan,
D. A.; Schneider, A.; Bouska, J .; Lesniewski, R.; Henkin, J .
Physiologically relevant metal cofactor for methionine ami-
nopeptidase-2 is manganese. Biochemistry 2003, 42, 5035-
5042.
Finally, the structural data provide the foundation
for further optimization of these classes of inhibitors.
For example, the inhibitors could be optimized by
exploiting the S1 subsite, which can accommodate a
larger substituent, as observed with the triazole series
of inhibitors.12 Moreover, the cyclopropyl group allows
for extensions toward the S1′ subsite.
Ack n ow led gm en t. We gratefully acknowledge the
excellent technical assistance of S. Haefeli and Daniel
Mareque, and we thank Dr. C. Schulze-Briese at the
SLS protein crystallography beamline X06SA, Paul
Scherrer Institute, Villigen, Switzerland, for his experi-
mental help and advice.
(19) Andersson, L.; Isley, T. C.; Wolfenden, R. R-Aminoaldehydes:
transition state analogue inhibitors of leucine aminopeptidase.
Biochemistry 1982, 21, 4177-4180.
(20) Hu, L. Y.; Abeles, R. H. Inhibition of cathepsin B and papain by
peptidyl alpha-keto esters, alpha-keto amides, alpha-diketones,
and alpha-keto acids. Arch. Biochem. Biophys. 1990, 281, 271-
274.
(21) Mattis, J . A.; Henes, J . B.; Fruton, J . S. Interaction of papain
with derivatives of phenylalanylglycinal. J . Biol. Chem. 1977,
252, 6776-6782.
(22) Thaisrivongs, S.; Pals, D. T.; Kati, W. M.; Turner, S. R.;
Thomasco, L. M.; Watt, W. Design and synthesis of potent and
specific renin inhibitors containing difluorostatine, difluorosta-
tone, and related analogues. J . Med. Chem. 1986, 29, 2080-
2087.
Su p p or tin g In for m a tion Ava ila ble: Crystallographic
details and synthesis of the discussed compounds and their
spectral data. This material is available free of charge via the
Internet at http://pubs.acs.org.
Refer en ces
(23) Umezawa, H. Low-molecular-weight enzyme inhibitors of mi-
crobial origin. Annu. Rev. Microbiol. 1982, 36, 75-99.
(24) Parlow, J . J .; Dice, T. A.; Lachance, R. M.; Girard, T. J .; Stevens,
A. M.; Stegeman, R. A.; Stallings, W. C.; Kurumbail, R. G.;
South, M. S. Polymer-assisted solution-phase library synthesis
and crystal structure of R-ketothiazoles as tissue factor VIIa
inhibitors. J . Med. Chem. 2003, 46, 4043-4049.
(25) Costanzo, M. J .; Yabut, S. C.; Almond, H. R., J r.; Andrade-
Gordon, P.; Corcoran, T. W.; De Garavilla, L.; Kauffman, J . A.;
Abraham, W. M.; Recacha, R.; Chattopadhyay, D.; Maryanoff,
B. E. Potent, small-molecule inhibitors of human mast cell
tryptase. Antiasthmatic action of a dipeptide-based transition-
state analogue containing a benzothiazole ketone. J . Med. Chem.
2003, 46, 3865-3876.
(26) Cortes, A.; Cascante, M.; Cardenas, M. L.; Cornish-Bowden, A.
Relationships between inhibition constants, inhibitor concentra-
tions for 50% inhibition and types of inhibition: new ways of
analysing data. Biochem. J . 2001, 357, 263-268.
(27) Liu, S.; Widom, J .; Kemp, C. W.; Crews, C. M.; Clardy, J .
Structure of human methionine aminopeptidase-2 complexed
with fumagillin. Science 1998, 282, 1324-1327.
(1) Giglione, C.; Vallon, O.; Meinnel, T. Control of protein life-span
by N-terminal methionine excision. EMBO J . 2003, 22, 13-
23.
(2) Hirel, P. H.; Schmitter, M. J .; Dessen, P.; Fayat, G.; Blanquet,
S. Extent of N-terminal methionine excision from Escherichia
coli proteins is governed by the side-chain length of the penul-
timate amino acid. Proc. Natl. Acad. Sci. U.S.A. 1989, 86, 8247-
8251.
(3) Moerschell, R. P.; Hosokawa, Y.; Tsunasawa, S.; Sherman, F.
The specificities of yeast methionine aminopeptidase and acetyl-
ation of amino-terminal methionine in vivo. Processing of altered
iso-1-cytochromes c created by oligonucleotide transformation.
J . Biol. Chem. 1990, 265, 19638-19643.
(4) Waller, J . P. The NH2 terminal residue of the proteins from cell-
free extract of E. coli. J . Mol. Biol. 1963, 7, 483-496.
(5) Chang, S. Y.; McGary, E. C.; Chang, S. Methionine aminopep-
tidase gene of Escherichia coli is essential for cell growth. J .
Bacteriol. 1989, 171, 4071-4072.
(6) Li, X.; Chang, Y. H. Amino-terminal protein processing in
Saccharomyces cerevisiae is an essential function that requires
two distinct methionine aminopeptidases. Proc. Natl. Acad. Sci.
U.S.A. 1995, 92, 12357-12361.