C O M M U N I C A T I O N S
Scheme 1. Oxidation of Racemic Sulfoxide Using the 4/H2O2
System
and at 20 °C with remarkably high catalyst turnover number. Further
study on the mechanism of this sulfoxidation is now proceeding in
our laboratory.
Acknowledgment. This paper is dedicated to the memory of
the late Professor Emeritus Yoshihiko Ito. Financial support
(Specially Promoted Research 18002011) from a Grant-in-Aid for
Scientific Research from MEXT, Japan, is gratefully acknowledged.
H.E. is grateful for the JSPS Research Fellowships for Young
Scientists.
Table 2. Asymmetric Oxidation of Various Sulfides Using 4a
1
Supporting Information Available: Experimental procedures, H
NMR spectra data for sulfoxides, and HPLC condition. This material
is available free of charge via the Internet at http://pubs.acs.org.
yield of
7b (%)
yield of
8b (%)
ee of
7c (%)
entry
R1
R2
96 (S)d
95 (S)d
References
1
2
3
4
5
p-MePh
p-MeOPh
p-ClPh
Me
Me
Me
Me
Me
Me
Et
Me
Me
Me
Me
b
c
d
e
f
91 (88)
92 (88)
76 (72)
97 (86)
99 (90)
80 (77)
78 (73)
93 (85)
82 (73)
82 (79)
91 (73)
9
8
(1) Reviews for oxidation using hydrogen peroxide or molecular oxygen: (a)
ten Brink, G.-J.; Arends, I. W. C. E.; Sheldon, R. A. Chem. ReV. 2004,
104, 4105-4123. (b) Irie, R.; Katsuki, T. Chem. Rec. 2004, 4, 96-109.
(c) Kaczorowaka, K.; Kolarska, Z.; Mitka, K.; Kowalski, P. Tetrahedron
24
<1
<1
<1
22
7
18
18
9
94 (S)d
96 (S)d
o-ClPh
d
o-MeOPh
o-MeOPh
Ph
95 (S)
2
005, 61, 8315-8327.
e
93 (S)d
81 (S)d
6
f
(
2) (a) Kobayashi, S.; Manabe, K. Acc. Chem. Res. 2002, 35, 209-217. (b)
Lindstr o¨ m, U. M. Chem. ReV. 2002, 102, 2751-2772. (c) Li, C.-J.; Chen,
L. Chem. Soc. ReV. 2006, 35, 68-83.
7
8
9
0
1
g
h
i
j
k
d
PhCH2
87 (S)
n-C8H17
n-C12H25
c-C6H11
89 (S)d
(3) (a) Azoulay, S.; Manabe, K.; Kobayashi, S. Org. Lett. 2005, 7, 4593-
4595. (b) Gu, Y.; Ogawa, C.; Kobayashi, J.; Mori, Y.; Kobayashi, S.
Angew. Chem., Int. Ed. 2006, 45, 7217-7220. (c) Boudou, M.; Ogawa,
C.; Kobayashi, S. AdV. Synth. Catal. 2006, 348, 2585-2589.
d
1
1
94 (S)
88 (S)d
(
4) (a) Sun, W.; Wang, H.; Xia, C.; Li, J.; Zhao, P. Angew. Chem., Int. Ed.
2003, 42, 1042-1044. (b) Scarso, A.; Strukul, G. AdV. Synth. Catal. 2005,
347, 1227-1234. (c) Bourhani, Z.; Malkov, A. V. Chem. Commun. 2005,
4592-4594.
a
The reactions were carried out on a 0.2 mmol scale in water (0.5 mL)
in the presence of 30% H2O2 (1.5 equiv) and 4 (1 mol %) at 20 °C, unless
otherwise mentioned. b Determined by 1H NMR (400 MHz) spectroscopic
(
5) Legros, J.; Dehli, J. R.; Bolm, C. AdV. Synth. Catal. 2005, 347, 19-31.
analysis. The values in parenthesis are isolated yields that were obtained
on a 0.4 or 0.5 mmol scale. Determined by HPLC analysis as reported in
Supporting Information. Assigned as reported in Supporting Information.
The reaction run on a 10 mmol scale with 0.01 mol % of 4 for 6 h in the
c
(6) (a) Fern a´ ndez, I.; Khiar, N. Chem. ReV. 2003, 103, 3651-3706. (b)
Pellissier, H. Tetrahedron 2006, 62, 5559-5601.
d
(
7) (a) Kagan, H. B.; Luukas, T. O. Catalytic Asymmetric Sulfide Oxidations.
In Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm,
C., Eds.; Wiley-VCH: Weinheim, Germany, 2004; Vol. 2, pp 479-495.
e
presence of 30% H2O2 (1.2 equiv).
(b) Bolm, C. Coord. Chem. ReV. 2003, 237, 245-256.
(
2 2
8) For recent examples of asymmetric sulfoxidation using H O as terminal
sulfoxide 7e exclusively with 96% ee (entry 4). It is noteworthy
that the oxidation of o-methoxy-substituted sulfide gave the
corresponding sulfoxide 7f exclusively with almost the same
enantioselectivity as 7e (entry 5), and the turnover number of 4
amounted to 8000 (entry 6). The results suggested that the presence
of an o-substituent significantly suppresses over-oxidation. The
oxidation of ethyl phenyl sulfide 6g proceeded with somewhat
reduced enantioselectivity of 81% ee (entry 7). To our delight, the
present oxidation could be successfully applied to oxidation of alkyl
methyl sulfides (6h-k), giving the corresponding sulfoxides of 87-
oxidant, see: (a) Page, P. B.; Heer, J. P.; Bethell, D.; Lund, B. L.
Phosphorus, Sulfur Silicon 1999, 153-154, 247-258. (b) Saito, B.;
Katsuki, T. Tetrahedron Lett. 2001, 42, 3873-3876. (c) Pelotier, B.; Ason,
M. S.; Campbell, I. B.; Macdonald, S. J. F.; Priem, G.; Jackson, R. F. W.
Synlett 2002, 1055-1060. (d) Ohta, C.; Shimizu, H.; Kondo, A.; Katsuki,
T. Synlett 2002, 161-163. (e) Legros, J.; Bolm, C. Angew. Chem., Int.
Ed. 2003, 42, 5487-5489. (f) Miyazaki, T.; Katsuki, T. Synlett 2003,
1046-1048. (g) Thakur, V. V.; Sudalai, A. Tetrahedron: Asymmetry 2003,
14, 407-410. (h) Weix, D. J.; Ellman, J. A. Org. Lett. 2003, 5, 1317-
1
320. (i) Legros, J.; Bolm, C. Angew. Chem., Int. Ed. 2004, 43, 4225-
4228. (j) Sun, J.; Zhu, C.; Dai, Z.; Yang, M.; Pan, Y.; Hu, H. J. Org.
Chem. 2004, 69, 8500-8503. (k) Legros, J.; Bolm, C. Chem.sEur. J.
2
005, 11, 1086-1092. (l) Drago, C.; Caggiano, L.; Jackson, R. F. W.
Angew. Chem., Int. Ed. 2005, 44, 7221-7223.
(
9) Palucki, M.; Hanson, P.; Jacobsen, E. N. Tetrahedron Lett. 1992, 33,
7
94% ee (entries 8-11). Although slight over-oxidation was
111-7114.
observed, the enantiomer differentiation (krel) measured in the
oxidation of racemic methyl octyl sulfoxide was as small as 4.5
(
10) (a) High enantioselectivity greater than 80% in the oxidation of methyl
n-alkyl sulfides has been achieved with a Ti/DET/H O/CHP system:
Brunel, J.-M.; Diter, P.; Duetsch, M.; Kagan, H. B. J. Org. Chem. 1995,
2
(Scheme 1).
6
0, 8086-8088. (b) Recently, we found that oxidation of methyl n-octyl
The mechanism of iron-catalyzed sulfoxidation is not well-
sulfide using Ti(salen) catalyst proceeded with 91% ee: Matsumoto, K.;
Saito, B.; Katsuki, T. Chem. Commun. 2007, advance articles.
11) Yamaguchi, T.; Matsumoto, K.; Saito, B.; Katsuki, T. Angew. Chem., Int.
Ed. 2007, 46, 4729-4731.
understood.8
k,14
In the present oxidation, mixing of solid 4 with
(
(
1
sulfide in water immediately gives a biphasic liquid system. H
NMR analysis of the system (1:1 4/sulfide/D O) showed the
2 2
12) For epoxidation with a Ti(salan)/aqueous H O system, see: Sawada, Y.;
2
Matsumoto, K.; Kondo, S.; Watanabe, H.; Ozawa, T.; Suzuki, K.; Saito,
B.; Katsuki, T. Angew. Chem., Int. Ed. 2006, 45, 3478-3480.
broadened signals of the sulfide, indicating the formation of a
sulfide-coordinated 4. The generation of the biphasic system should
increase substrate concentration around 4. Thus, regardless of a
heterogeneous system, the reaction in water proceeded as rapidly
as that in methanol. Higher enantioselectivity was also observed
in water than in methanol (see Supporting Information).
In summary, we have achieved highly enantioselective sulfoxi-
dation with wide scope of application in water in the absence of a
surfactant by using a novel Fe(salan) complex/aqueous hydrogen
peroxide system. The reaction can be carried out in ambient air
(
13) Bolm, C.; Legros, J.; Paih, J. L.; Zani, L. Chem. ReV. 2004, 104, 6217-
6254.
(
14) It has been reported that Fe(salen) complexes catalyze oxidation enanti-
oselectively, only when PhIO is used as the oxidant.: Bryliakov, K. P.;
Talsi, E. P. Angew. Chem., Int. Ed. 2004, 43, 5228-5230.
(
2 2
15) H O was slightly decomposed under the conditions (see Supporting
Information).
(
16) For recent examples of kinetic resolution of racemic sulfoxide, see: (a)
Thakur, V. V.; Sudalai, A. Tetrahedron: Asymmetry 2003, 14, 407-410.
(b) Mohammadpoor-Baltork, I.; Hill, M.; Caggiano, L.; Jackson, R. F.
W. Synlett 2006, 3540-3544.
JA071916+
J. AM. CHEM. SOC.
9
VOL. 129, NO. 29, 2007 8941