694 J. Agric. Food Chem., Vol. 50, No. 4, 2002
Buskov et al.
Kirkegaard (35) and Potter (30) also suggested that root-type
glucosinolates are more potent than leaf-type glucosinolates in
soil biofumigation, mainly due to the effect from phenethyl-
isothiocyanate. However, the plant root biomass represents only
a small proportion of the total plant biomass, which depends
on the Brassica species. Thus, if these plants are used in soil
amendments, higher root biomass is required to increase the
beneficial effects, unless the concentration in the roots can
compensate for their lower biomass. Aerial plant parts containing
glucosinolates and particularly prop-2-enyl- and/or benzylglu-
cosinolates will induce, according to the results of this study, a
synergetic effect on the control of this nematode depending on
the glucosinolate concentration and biomass production. Envi-
ronmental conditions during hydrolysis (soil pH, temperature,
and humidity) might also affect the release of the desired
isothiocyantes and other glucosinolate-derived compounds.
Method of Analysis for the Determination of 4-Hydroxybenzyl-
glucosinolate Degradation Products. J. Biochem. Biophys. Meth-
ods 2000, 43, 157-174.
(
12) Buskov, S.; Hansen, L. B.; Olsen, C. E.; Sørensen, J. C.;
Sørensen, H.; Sørensen, S. Determination of Ascorbigens in
Autolysates of Various Brassica Species Using Supercritical
Fluid Chromatography. J. Agric. Food. Chem. 2000, 48, 2693-
2
701.
(
13) Rosa, E. Daily variation in glucosinolate concentrations in the
leaves and roots of cabbage seedlings in two constant temperature
regimes. J. Sci. Food Agric. 1997, 73, 364-368.
(14) Ellenby, C. Control of the potato-root eelworm, Heterodera
rostochiensis Wollenweber, by allylisothiocyanate, the mustard
oil of Brassica nigra L. Ann. Appl. Biol. 1945, 32, 237-239.
(
15) Lear, B. Results of laboratory experiments with vapam for control
of nematodes. Plant Dis. Rep. 1956, 40, 847-852.
(
16) Bagger, C. L.; Sørensen, H.; Sørensen, J. C. High-Quality Oils,
Proteins, and Bioactive Products for Food and Non-food Purposes
based on Biorefining of Cruciferous Oilseed Crops. In Plant
Proteins from European Crops; Gueguen, J., Popineau, Y., Eds.;
Springer-Verlag: New York, 1998; pp 272-278.
CONCLUSION
(
17) Jing, G. N.; Halbrendt, J. M. Evaluation of rapeseed extract
Intact glucosinolates have no mortality effect on the second-
stage juveniles of the potato cyst nematode G. rostochiensis,
but such an effect is achieved when the corresponding myro-
sinase-catalyzed hydrolysis products are released. The magnitude
of the mortality is dependent on the type of glucosinolate,
concentration, and time of exposure of the nematode to the
isothiocyanate.
toxicity using a Caenorhabditis elegans. J. Nematol. 1992, 24,
6
00-601 (Abstr.).
(
18) Jing, G. N.; Halbrendt, J. M. Nematotoxins in rapeseed extract
toxicity using a Caenorhabditis elegans. J. Penn. Acad. Sci. 1993,
66, 168 (Abstr.).
(19) Jing, G. N.; Halbrendt, J. M. Relationship of glucosinolate in
rapeseed extracts to toxicity against Caenorhabditis elegans. J.
Nematol. 1994, 26, 104 (Abstr.).
(
20) Jing, G. N.; Halbrendt, J. M. Nematicidal compounds from
LITERATURE CITED
rapeseed (Brassica napus and B. campestris). J. Penn. Acad. Sci.
1
994, 68, 29-33.
(
1) Kjær, A. Glucosinolates in the Cruciferae. In The Biology and
Chemistry of the Cruciferae; Vaughn, J. G., Macleod, A. J.,
Jones, B. M. G., Eds.; Academic Press: London, U.K., 1976;
pp 207-219.
2) Bjerg, B.; Sørensen, H. Isolation of Intact Glucosinolates by
Column Chromatography and Determination of Their Purity. In
Glucosinolates in Rapeseeds: Analytical Aspects; Wathelet, J.-
P., Ed.; Martinus Nijhoff Publishers: Dordrecht, The Nether-
lands, 1987; pp 59-75.
(21) Johnson, A. W.; Golden, A. M.; Auld, D. L.; Summer, D. R.
Effect of rapeseed and vetch as green manure crops and fallow
on nematodes and soilborne pathogens. J. Nematol. 1992, 24,
117-126.
(22) Mojtahedi, H.; Santo, G. S.; Hang, A. N.; Wilson, J. H.
Suppression of root-knot nematode populations with selected
rapeseed cultivars as green manure. J. Nematol. 1991, 23, 170-
174.
(23) Mojtahedi, H.; Santo, G. S.; Wilson, J. H.; Hang, A. N. Managing
Meloidogyne chitwoodi on potato with rapeseed as green manure.
Plant Dis. 1993, 77, 42-46.
(24) Lazzeri, L.; Tacconi, R.; Palmieri, S. In vitro activity of some
glucosinolates and their action products toward a population of
the nematode Heterodera schachtii. J. Agric. Food Chem. 1993,
41, 825-829.
(25) Donkin, S. G.; Eiteman, M. A.; Williams, P. L. Toxicity of
glucosinolate and their enzymatic decomposition products to
Caenorhabditis elegans. J. Nematol. 1995, 27, 258-262.
(26) Pinto, S.; Rosa, E.; Santos, S. Effect of 2-propenyl glucosinolate
and derived isothiocyanate on the activity of the nematode
Globodera rostochiensis (Woll.). Acta Hortic. 1998, 459, 323-
327.
(
(
3) Fahey, J. W.; Zalcmann, A. T.; Talalay, P. The Chemical
Diversity and Distribution of Glucosinolates and Isothiocyanates
among Plants. Phytochemistry 2001, 56 (1), 5-51.
(
4) Sørensen, H. Glucosinolates: Structure-Properties-Function. In
Rapeseed/Canola: Production, Chemistry, Nutrition and Pro-
cessing Technology; Shahidi, F., Ed.; Van Nostrand Reinhold
Publisher: New York, 1990; pp 149-172.
(
5) Rosa, E.; Heaney, R. K.; Fenwick, G. R.; Portas, C. A. M.
Glucosinolates in crop plants. Hortic. ReV. 1997, 19, 99-215.
6) Buchwaldt, L.; Larsen, L. M.; Pl o¨ ger, A.; Sørensen, H. FPLC
Isolation and Characterization of Plant Myrosinase, â-Thioglu-
coside Glucohydrolase, Isoenzymes. J. Chromatogr. 1986, 363
(
(1), 71-80.
(
7) Michaelsen, S.; Mortensen, K.; Sørensen, H. Myrosinase in
Brassica: Characterization and Properties. Proceedings of the
GCIRC 8th International Rapeseed Congress, Canada; 1991; pp
(27) Abreu, C. Nem a´ todos-de-quisto da Batateira. C a´ lculo de Preju ´ı zos;
UTAD: Vila Real, Portugal, 1987; p 54.
(28) Ellenby, C. Mustard oils and control of the potato-root eelworm,
Heterodera rostochiensis wollenweber. Further field and labora-
tory experiments. Ann. Appl. Biol. 1951, 38, 859-875.
(29) McSorley, R.; Frederick, J. J. Responses of some common
Cruciferae to root-knot nematodes. J. Nematol. 1995, 27 (4
Suppl.), 550-554.
9
05-910.
(
8) Palmieri, S.; Rollin, P.; Sørensen, H.; Sørensen, S. Enzyme
Technology for a Potential Glucosinolate Utilization in Agro-
Industry. Agro. Food Ind. High Technol. 1998, 9 (1), 24-27.
9) Olsen, O.; Sørensen, H. Recent Advances in the Analysis of
Glucosinolates. J. Am. Oil Chem. Soc. 1981, 58, 857-865.
(
(30) Potter, M. Suppressive compounds in brassicasswhat and where
(
10) Bjergegaard, C.; Li, P. W.; Michaelsen, S.; Møller, P.; Otte, J.;
Sørensen, H. Glucosinolates and Their Transformation Productss
Compounds with a Broad Biological Activity. Bioact. Subst.
Food Plant Origin 1994, 1, 1-15.
in the plant. Cereal Biofumigation Update 1996.
(31) Sørensen, H.; Sørensen, S.; Bjergegaard, C.; Michaelsen, S.;
Chromatography and Capillary Electrophoresis in Food Analy-
sis; Royal Society of Chemistry: Cambridge, U.K., 1999.
(32) Abbott, W. S. A Method of Computing the Effectiveness of an
Insecticide. J. Econ. Entomol. 1925, 18, 265-267.
(11) Buskov, S.; Hasselstrøm, J.; Olsen, C. E.; Sørensen, H.; Sørensen,
J. C.; Sørensen, S. Supercritical Fluid Chromatography as a