Clegg et al.
JOCArticle
SCHEME 1. Synthesis of Cyclic Carbonates
SCHEME 2. Reaction between Epoxides and Carbon Disulfide
and DMAP at 120 °C,14b or triethylamine or DMAP in
water14g selectively produced 1,3-oxathiolane-2-thiones, and
potassium hydroxide or alkoxides,18b-f (2-propanolato)-
titanatrane,18g or timethylamine (under high pressure)18a
formed compounds 4 selectively. It is also known that com-
pounds 2 can be isomerized to compounds 3 by potassium
iodide15 or by protic or Lewis acids,19 that compounds 2 react
with excess carbon disulfide to give trithiocarbonates 4,18g and
that compounds 4 can be converted into compounds 3 by
treatment with lead tetraacetate,17b diaryltellurium species,17c
or benzeneseleninic anhydride.17d
1,3-Oxathiolane-2-thiones 2 and 1,3-dithiolane-2-thiones 4
have both been shown to possess radioprotective activity.20
Dithiocarbonates 2 have also been used in polymer synthe-
ses,14c,19,21 while trithiocarbonates 4 have been found to possess
insecticidal activity.22 In this paper, we give full details of the
synthesis of compounds 2 and 4 from epoxides and carbon
disulfide catalyzed by complex 1 and tetrabutylammonium
bromide,23 present the structures of three of the 1,3-dithiolane-
2-thiones determined by X-ray crystallography, correct erro-
neous structural assignments in the literature, and report a
kinetic analysis of the synthesis of dithiocarbonates 2 which
allows a reaction mechanism to be determined.
out at atmospheric pressure and room temperature10 and to be
integrated with oxyfuel combustion in a combined energy and
chemical production unit.11 Immobilized versions of complex 1
subsequently allowed cyclic carbonate synthesis to be carried
out in a gas-phase flow reactor.12
In view of the high catalytic activity shown by complex 1 for
the synthesis of cyclic carbonates, we decided to investigate
its use in the related reaction between epoxides and carbon
disulfide. This is known to be a more complex reaction as a
variety of products can be formed13 depending on the catalyst
and reaction conditions, including 1,3-oxathiolane-2-thiones14,15 2,
1,3-dithiolane-2-ones16,17 3, 1,3-dithiolane-2-thiones18 4,
1,3-oxathiolane-2-ones13b 5, and thiiranes14a 6 as shown in
Scheme 2. Previous work has shown that use of triethylamine
(under high pressure)13 as catalyst gave mixtures of products,
while lithium bromide,14a hydrotalcite,14e sodium methoxide,14f
tributylphosphine and lithium perchlorate,14c,d 4-methoxyphenol
(10) (a) Melendez, J.; North, M.; Pasquale, R. Eur. J. Inorg. Chem. 2007,
3323–3326. (b) North, M.; Pasquale, R. Angew. Chem., Int. Ed. 2009, 48,
2946–2948. (c) Clegg, W.; Harrington, R. W.; North, M.; Pasquale, R.
Chem.;Eur. J. 2010, 16, 6828–6843.
(11) Metcalfe, I. S.; North, M.; Pasquale, R.; Thursfield, A. Energy
Environ. Sci. 2010, 3, 212–215.
Results and Discussion
Preliminary attempts to catalyze the reaction between
epoxides and carbon disulfide using complex 1 and/or tetra-
butylammonium bromide at atmospheric pressure and room
temperature, the conditions used for the synthesis of cyclic
carbonates10 (Scheme 1), were unsuccessful. Therefore, reac-
tions were carried out using propylene oxide 7a as substrate with
up to 7 equiv of carbon disulfide in a sealed Young’s tube for
16 h under solvent-free conditions (Scheme 3). The results of
ꢀ
(12) (a) Melendez, J.; North, M.; Villuendas, P. Chem. Commun. 2009,
2577–2579. (b) North, M.; Villuendas, P.; Young, C. Chem.;Eur. J. 2009,
11454–11457.
(13) For reactions leading to mixtures of compounds 2-6, see: (a) Taguchi,
Y.; Yanagiya, K.; Shibuya, I.; Suhara, Y. Bull. Chem. Soc. Jpn. 1988, 61, 921–
925. (b) Taguchi, Y.; Yasumoto, M.; Shibuya, I.; Suhara, Y. Bull. Chem. Soc.
Jpn. 1989, 62, 474–478.
(14) (a) Kihara, N.; Nakawaki, Y.; Endo, T. J. Org. Chem. 1995, 60, 473–
475. (b) Shen, Y.-M.; Duan, W.-L.; Shi, M. Eur. J. Org. Chem. 2004, 3080–
3089. (c) Motokucho, S.; Itagaki, Y.; Sudo, A.; Endo, T. J. Polym. Sci., Part
A: Polym. Chem. 2005, 43, 3711–3717. (d) Wu, J.-Y.; Luo, Z.-B.; Dai, L.-X.;
Hou, X.-L. J. Org. Chem. 2008, 9137–9139. (e) Maggi, R.; Malmassari, C.;
Oro, Ch.; Pela, R.; Sartori, G.; Soldi, L. Synthesis 2008, 53–56. (f) Yavari, I.;
Ghazanfarpour-Darjani, M.; Hossaini, Z.; Sabbaghan, M.; Hosseini, N.
Synlett 2008, 889–891. (g) Halimehjani, A. Z.; Ebrahimi, F.; Azizi, N.; Saidi,
M. R. J. Heterocycl. Chem. 2009, 46, 347–350.
SCHEME 3. Synthesis of Propylene Di- And Trithiocarbonates
2a and 4a
(15) For the synthesis of 1,3-oxathiolane-2-thiones using thiophosgene,
see: Jones, F. N.; Andreades, S. J. Org. Chem. 1969, 34, 3011–3014.
(16) For a related synthesis of 1,3-dithiolane-2-ones by reaction of
epoxides with trithiocarbonates, see: Barbero, M.; Degani, I.; Dughera,
S.; Fochi, R.; Piscopo, L. J. Chem. Soc., Perkin Trans. 1 1996, 289–294.
(17) For other syntheses of 1,3-dithiolane-2-ones, see: (a) Corey, E. J.;
Mitra, R. B. J. Am. Chem. Soc. 1962, 84, 2938–2941. (b) Adley, T. J.;
Anisuzzaman, A. K. M.; Owen, L. N. J. Chem. Soc. C 1967, 807–812. (c) Ley,
S. V.; Meerholz, C. A.; Barton, D. H. R. Tetrahedron Lett. 1980, 21, 1785–
1788. (d) Cussans, N. J.; Ley, S. V.; Barton, D. H. R. J. Chem. Soc., Perkin
Trans. 1 1980, 1650–1653. (e) Yasuda, N.; Yatami, T.; Ohnuki, T.; Okutsu,
M. J. Heterocycl. Chem. 1984, 21, 1845–1848.
(18) (a) Durden, J. A., Jr.; Stansbury, H. A., Jr.; Catlette, W. H. J. Am.
Chem. Soc. 1960, 82, 3082–3084. (b) Overberger, C. G.; Drucker, A. J. Org.
Chem. 1964, 29, 360–366. (c) Kyaw, M.; Owen, L. N. J. Chem. Soc. 1965,
1298–1305. (d) Hayashi, S.; Furukawa, M.; Fujino, Y.; Nakao, T.; Nagato,
K. Chem. Pharm. Bull. 1971, 19, 1594–1597. (e) McCasland, G. E.; Zanlungo,
A. B.; Durham, L. J. J. Org. Chem. 1974, 39, 1462–1466. (f) Jesudason, M. V.;
Owen, L. N. J. Chem. Soc., Perkin Trans. 1 1974, 1443–1446. (g) Motokucho,
S.; Takeuchi, D.; Sanda, F.; Endo, T. Tetrahedron 2001, 57, 7149–7152.
(19) (a) Choi, W.; Sanda, F.; Endo, T. Macromolecules 1998, 31, 2454–
2460. (b) Choi, W.; Sanda, F.; Endo, T. Heterocycles 2000, 52, 125–128.
(20) Robbe, Y.; Fernandez, J.-P.; Dubief, R.; Chapat, J.-P.;
Sentenac-Roumanou, H.; Fatome, M.; Laval, J.-D.; Subra, G. Eur. J.
Med. Chem.-Chem. Ther. 1982, 17, 235–243.
(21) (a) Choi, W.; Sanda, F.; Kihara, N.; Endo, T. J. Polym. Sci., Part A:
Polym. Chem. 1997, 35, 3853–3856. (b) Motokucho, S.; Sudo, A.; Sanda, F.;
Endo, T. Chem. Commun. 2002, 1946–1947.
(22) Runge, F.; El-Heweki, Z.; Renner, H. J.; Taeger, E. J. Prakt. Chem.
1960, 11, 284–308.
(23) For a preliminary report of some of this work, see: North, M.;
Villuendas, P. Synlett 2010, 623–627.
6202 J. Org. Chem. Vol. 75, No. 18, 2010