D
S. Adachi et al.
Letter
Synlett
protocol was also applicable to benzamides and acid-labile
N-Boc, O-MOM, and O-TBS groups were tolerated (7b–d). A
tBu ester group remained unchanged (7e). A substrate bear-
ing a pyridyl group, which can potentially impair the che-
lating activation by Zn(OTf)2, afforded desired methyl ester
7f in high yield. Amides derived from sp3-aliphatic carbox-
ylic acid exhibited high reactivity and a γ-keto group had
no detrimental effects (7g,h). The absence of racemization
in the catalytic solvolysis of the amide α-amino acid deriva-
tive underscored the mild solvolytic protocol,23 delivering
Fmoc-Ala-OMe (7h) in high yield without undesired depro-
tection of base-sensitive Fmoc group.
In conclusion, we demonstrated that bis(2-pyridyl)am-
ides are amenable to solvolytic cleavage to give the corre-
sponding esters under mild catalytic conditions using Zn2+
or Cu2+ salts. The neutral and room-temperature protocol
accommodates a variety of base- and acid-labile functional
groups. The observed coordination mode in X-ray crystallo-
graphic analysis indicated that the amide functional group
was not affected by metal cations, and the amide distortion
driven by peripheral steric bias was crucially involved in
engaging the amide in solvolysis.
K.; Stoltz, B. M. Nature 2006, 441, 731. (e) Komarov, I. V.; Yanik,
S.; Ishchenko, A. Y.; Davies, J. E.; Goodman, J. M.; Kirby, A. J.
J. Am. Chem. Soc. 2015, 137, 926. (f) Liniger, M.; VanderVelde, D.
G.; Takase, M. K.; Shahgholi, M.; Stoltz, B. M. J. Am. Chem. Soc.
2016, 138, 969.
(6) (a) Pedone, C.; Benedetti, E.; Immirzi, A.; Allegra, G. J. Am. Chem.
Soc. 1970, 92, 3549. (b) Somayaji, V.; Brown, R. S. J. Org. Chem.
1986, 51, 2676. (c) Shustov, G. V.; Kadorkina, G. K.; Varlamov, S.
V.; Kachanov, A. V.; Kostyanovsky, R. G.; Rauk, A. J. Am. Chem.
Soc. 1992, 114, 1616. (d) Yamada, S. Angew. Chem. Int. Ed. 1993,
32, 1083. (e) Shao, H.; Jiang, X.; Gantzel, P.; Goodman, M. Chem.
Biol. 1994, 1, 231. (f) Yamamoto, G.; Murakami, H.; Tsubai, N.;
Mazaki, Y. Chem. Lett. 1997, 605. (g) Matta, C. F.; Cow, C. C.; Sun,
S.; Britten, J. F.; Harrison, P. H. M. J. Mol. Struct. 2000, 523, 241.
(h) Łysek, R.; Borsuk, K.; Chmielewski, M.; Urbańczyk-Lipkow-
ska, Z. K. Z.; Klimek, A.; Frelek, J. J. Org. Chem. 2002, 67, 1472.
(i) Gillson, A.-M. E.; Glover, S. A.; Tucker, D. J.; Turner, P. Org.
Biomol. Chem. 2003, 1, 3430. (j) Otani, Y.; Nagae, O.; Naruse, Y.;
Inagaki, S.; Ohno, M.; Yamaguchi, K.; Yamamoto, G.; Uchiyama,
M.; Ohwada, T. J. Am. Chem. Soc. 2003, 125, 15191. (k) Szostak,
M.; Yao, L.; Aubé, J. J. Am. Chem. Soc. 2010, 132, 2078.
(l) Artacho, J.; Ascic, E.; Rantanen, T.; Wallentin, C.-J.;
Dawaigher, S.; Bergquist, K.-E.; Harmata, M.; Snieckus, V.;
Wärnmark, K. Org. Lett. 2012, 14, 4706. (m) Zaretsky, S.; Rai, V.;
Gish, G.; Forbes, M. W.; Kofler, M.; Yu, J. C. Y.; Tan, J.; Hickey, J.
L.; Pawson, T.; Yudin, A. K. Org. Biomol. Chem. 2015, 13, 7384.
(7) (a) Meng, G.; Szostak, M. Org. Lett. 2015, 17, 4364. (b) Pace, V.;
Holzer, W.; Meng, G.; Shi, S.; Lalancette, R.; Szostak, R.; Szostak,
M. Chem. Eur. J. 2016, 22, 14494. (c) Szostak, R.; Shi, S.; Meng,
G.; Lalancette, R.; Szostak, M. J. Org. Chem. 2016, 81, 8091.
(8) (a) Meng, G.; Szostak, M. Org. Lett. 2016, 18, 796. (b) Meng, G.;
Szostak, M. Org. Biomol. Chem. 2016, 14, 5690. (c) Lei, P.; Meng,
G.; Szostak, M. ACS Catal. 2017, 7, 1960. (d) Shi, S.; Szostak, M.
Org. Lett. 2017, 19, 3095.
Funding Information
This work was financially supported by KAKENHI (17H03025 and
JP16H01043 in Precisely Designed Catalysts with Customized Scaf-
folding) from JSPS.
a
Jp
a
n
S
o
ecity
o
f
r
hte
P
or
m
o
itn
of
Secince
1(
7
H
0
3
0
2
5)
P
J(1
6
H
0
1
0
4
3)
Acknowledgment
(9) For examples of acid anhydride formation and Friedel–Crafts
reactions using N-acylimides, see: (a) Liu, Y.; Meng, G.; Liu, R.;
Szostak, M. Chem. Commun. 2016, 52, 6841. (b) Liu, Y.; Liu, R.;
Szostak, M. Org. Biomol. Chem. 2017, 15, 1780.
Dr. Tomoyuki Kimura is gratefully acknowledged for the X-ray crystal-
lographic analysis.
(10) (a) Li, X.; Zou, G. Chem. Commun. 2015, 51, 5089. (b) Baker, E. L.;
Yamano, M. M.; Zhou, Y.; Anthony, S. M.; Garg, N. K. Nat.
Commun. 2016, 7, 11554. (c) Cui, M.; Wu, H.; Jian, J.; Wang, H.;
Liu, C.; Daniel, S.; Zeng, Z. Chem. Commun. 2016, 52, 12076.
(d) Hie, L.; Baker, E. L.; Anthony, S. M.; Desrosiers, J. N.;
Senanayake, C.; Garg, N. K. Angew. Chem. Int. Ed. 2016, 55,
15129. (e) Hu, J.; Zhao, Y.; Liu, J.; Zhang, Y.; Shi, Z. Angew. Chem.
Int. Ed. 2016, 55, 8718. (f) Liu, L. L.; Chen, P.; Sun, Y.; Wu, Y.;
Chen, S.; Zhu, J.; Zhao, Y. J. Org. Chem. 2016, 81, 11686. (g) Meng,
G.; Shi, S.; Szostak, M. ACS Catal. 2016, 6, 7335. (h) Shi, S.;
Szostak, M. Org. Lett. 2016, 18, 5872. (i) Simmons, B. J.; Weires,
N. A.; Dander, J. E.; Garg, N. K. ACS Catal. 2016, 6, 3176.
(j) Weires, N. A.; Baker, E. L.; Garg, N. K. Nat. Chem. 2016, 8, 75.
(k) Dander, J. E.; Baker, E. L.; Garg, N. K. Chem. Sci. 2017, 8, 6433.
(l) Lei, P.; Meng, G.; Shi, S.; Ling, Y.; An, J.; Szostak, R.; Szostak,
M. Chem. Sci. 2017, 8, 6525. (m) Liu, C.; Liu, Y.; Liu, R.;
Lalancette, R.; Szostak, R.; Szostak, M. Org. Lett. 2017, 19, 1434.
(n) Medina, J. M.; Moreno, J.; Racine, S.; Du, S.; Garg, N. K.
Angew. Chem. Int. Ed. 2017, 56, 6567.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
References and Notes
(1) Greenberg, A.; Breneman, C. M.; Liebman, J. F. The Amide Link-
age: Structural Aspects in Chemistry, Biochemistry, and Materials
Science; Wiley-Interscience: New York, 2000.
(2) (a) Cox, C.; Lectka, T. Acc. Chem. Res. 2000, 33, 849. (b) Clayden,
J.; Moran, W. J. Angew. Chem. Int. Ed. 2006, 45, 7118. (c) Szostak,
M.; Aubé, J. Org. Biomol. Chem. 2011, 9, 27. (d) Szostak, M.;
Aubé, J. Chem. Rev. 2013, 113, 5701. (e) Szostak, M.; Meng, G.;
Shi, S. Synlett 2016, 27, 2530. (f) Liu, C.; Szostak, M. Chem. Eur. J.
2017, 23, 7157. (g) Szostak, M.; Shi, S. Synthesis 2017, 3602.
(3) Lukeš, R. Collect. Czech. Chem. Commun. 1938, 10, 148.
(4) Winkler, F. K.; Dunitz, J. D. J. Mol. Biol. 1971, 59, 169.
(5) (a) Kirby, A. J.; Komarov, I. V.; Feede, N. J. Am. Chem. Soc. 1998,
120, 7101. (b) Kirby, A. J.; Komarov, I. V.; Wothers, P. D.; Feeder,
N. Angew. Chem. Int. Ed. 1998, 37, 785. (c) Kirby, A. J.; Komarov,
I. V.; Feeder, N. J. Chem. Soc., Perkin Trans. 2 2001, 522. (d) Tani,
(11) (a) Liu, C.; Meng, G.; Liu, Y.; Liu, R.; Lalancette, R.; Szostak, R.;
Szostak, M. Org. Lett. 2016, 18, 4194. (b) Liu, C.; Meng, G.;
Szostak, M. J. Org. Chem. 2016, 81, 12023. (c) Wu, H.; Liu, T.; Cui,
M.; Li, Y.; Jian, J.; Wang, H.; Zeng, Z. Org. Biomol. Chem. 2017, 15,
536.
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–E