EPOXIDATION OF ALLYLIC ALCOHOLS WITH V-LDH
231
The intercalation of decavanadate in the LDH materials
provides a unique opportunity to study the catalytic proper-
ties of these compounds under anhydrous conditions, with
tBuOOH as the oxidant. When homogeneous decavana-
date is dissolved as a quaternary ammonium salt in toluene,
it displays a very low activity, which may tentatively be as-
cribed to a too strong wrapping of the decavanadate by
the organic cations. Consequently, the peroxide and the
substrate have no access to the decavanadate; the reaction
only starts after an induction period, when the UV–visible
spectrum evidences disappearance of the decavanadate. A
similar situation has been observed with P-W Keggin het-
eropolyanions, which are degraded by a peroxide before
they display an appreciable epoxidation activity (30). This
contrasts with the behavior of decavanadate, exchanged on
an LDH or in an organic resin. Particularly in the LDH, the
decavanadate seems well accessible, and the epoxidation
starts immediately, without a noticeable induction period.
The results of the epoxidation of a series of allylic alco-
hols (Table 4) strongly evidence that the alcohol group in
3. Mimoun, H., Saussine, L., Daire, E., Postel, M., Fischer, J., and Weiss,
R., J. Am. Chem. Soc. 105, 3101 (1983).
4
5
. Mimoun, H., Mignard, M., Brechot, P., and Saussine, L., J. Am. Chem.
Soc. 108, 3711 (1986).
. Sheldon, R. A., and Kochi, J. K., “Metal-Catalyzed Oxidations of Or-
ganic Compounds.” Academic Press, San Diego, 1981.
6. Sharpless, K. B., and Verhoeven, T. R., Aldrichimica Acta 12, 63 (1979),
and references therein.
7
8
. Whittington, B. I., and Anderson, J. R., J. Phys. Chem. 97, 1032
1993).
. Haanepen, M. J., Elemans-Mehring, A. M., and van Hooff, J. H. C.,
(
Appl. Catal. A 152, 203 (1997).
9. Reddy, J. S., Liu, P., and Sayari, A., Appl. Catal. A 148, 7 (1996).
0. Choudary, B. M., Valli, V. L. K., and Durga Prasad, A., J. Chem. Soc.,
Chem. Commun. 721 (1990).
1
1
1
1. Tatsumi, T., Yamamoto, K., Tajima, H., and Tominaga, H., Chem. Lett.
815 (1992).
2. Sels, B. F., De Vos, D. E., and Jacobs, P. A., Tetrahedron Lett. 47, 8557
(1996).
1
1
1
3. Gardner, E. A., and Pinnavaia, T. J., Appl. Catal. A 167, 65 (1998).
4. Fraile, J. M., Garcia, J. I., and Mayoral, J. A., Catal. Today 57, 3 (2000).
5. Trifiro, F., and Vaccari, A., in “Comprehensive Supramolecular Chem-
istry” (G. Alberti and T. Bein, Eds.), Vol. VII, p. 251. Pergamon,
Elmsford, NY, 1996.
the substrate molecule coordinates on the peroxo-V cen- 16. Sels, B., De Vos, D., Buntinx, M., Pierard, F., Kirsch-De Mesmaeker,
A., and Jacobs, P. A., Nature 400, 855 (1999).
ter. This implies that the active V species participates in
1
7. van Laar, F., De Vos, D., Vanoppen, D., Sels, B., Jacobs, P. A., Del
Guerzo, A., Pierard, F., and Kirsch-De Mesmaeker, A., Chem. Com-
mun. 267 (1998).
the reaction with two coordination sites, one for the per-
oxide activation, and another for the alcohol coordination.
Since a V atom is initially bound to the pillar with at least
1
8. Drezdzon, M. A., Inorg. Chem. 27, 4628 (1988).
five V–O–V bonds, one or two of these bonds must be bro- 19. Ulibarri, M., Labajos, F., Rives, V., Trujillano, R., Kagunya, W., and
Jones, W., Inorg. Chem. 33, 2592 (1994).
0. Lopez-Salinas, E., and Ono, Y., Bull. Chem. Soc. Jpn. 65, 2465
ken to enable reaction. Nevertheless, this leaves a sufficient
2
number of V–O–V bonds intact to keep all V within the
polyanions, as is firmly substantiated by the heterogeneity
tests.
Summarizing, we have proven that under well-defined
conditions, decavanadate-pillared LDH is a useful hetero-
geneous catalyst for selective epoxidation of terpenic allylic
alcohols.
(
1992).
2
2
1. Twu, J., and Dutta, P. K., J. Catal. 124, 503 (1990).
2. Kwon, T., Tsigdinos, G. A., and Pinnavaia, T. J., J. Am. Chem. Soc. 110,
3653 (1988).
3. Sels, B., De Vos, D., Pierard, F., Kirsch-De Mesmaeker, A., and Jacobs,
P. A., J. Phys. Chem. B 103, 11114 (1999).
2
2
4. Montes, C., Davis, M. E., Murray, B., and Narayana, M., J. Phys. Chem.
94, 6431 (1990).
2
2
2
2
2
3
5. Linden, G. L., and Farona, M. F., J. Catal. 48, 284 (1977).
6. Corigliano, F., and Di Pasquale, S., Inorg. Chim. Acta 12, 99 (1975).
7. Griffith, W. P., and Lesniak, P. J. B., J. Chem. Soc. (A) 1066 (1969).
8. Twu, J., and Dutta, P. K., J. Catal. 124, 503 (1990).
9. Twu, J., and Dutta, P. K., J. Phys. Chem. 93, 7863 (1989).
0. Aubry, C., Chottard, G., Platzer, N., Br e´ geault, J. M., Thouvenot, R.,
Chauveau, F., Huet, C., and Ledon, H., Inorg. Chem. 30, 4409 (1991).
1. Mordini, A., Pecchi, S., Capozzi, G., Capperucci, A., Degl’Innocenti,
A., Reginato, G., and Ricci, A., J. Org. Chem. 59, 4784 (1994).
2. Brito Baptistella, L., and Mendes Aleixo, A., Liebigs Ann. Chem. 785
(1994).
ACKNOWLEDGMENTS
We are grateful to Colciencias (A.L.V.), IWT (B.F.S.) and FWO
D.E.D.V.) for fellowships. This work is sponsored by the Belgian Fed-
eral Government in an IUAP program, Supramolecular Catalysis.
(
3
3
REFERENCES
1
2
. Bellussi, G., and Rigutto, M. S., Stud. Surf. Sci. Catal. 85, 177 (1994).
. Villa de P., A. L., Sels, B., De Vos, D., and Jacobs, P. A., J. Org. Chem.
33. Arends, I. W. C. E., Pellizon Birelli, M., and Sheldon, R. A., Stud. Surf.
Sci. Catal. 110, 1031 (1997).
6
4, 7267 (1999).